A response surface modeling approach for simultaneous optimization of optical purity and yield was applied to the resolution of tartaric acid to study the effects of both the amount of the solvent and the amount of th...A response surface modeling approach for simultaneous optimization of optical purity and yield was applied to the resolution of tartaric acid to study the effects of both the amount of the solvent and the amount of the resolving agent a-methylbenzyl amine on the resolution results. The direction of changing the experimental conditions was determined from the initial response study, and expected high yield of the pure L(+)-tartaric acid-L(-)-a-methylbenzyl amine salt was obtained.展开更多
EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a fact...EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.展开更多
157 nm photodissociation of jet-cooled CH3OH and C2HsOH was studied using the high-n Rydberg atom time-of-flight (TOF) technique. TOF spectra of nascent H atom products were measured. Simulation of these spectra rev...157 nm photodissociation of jet-cooled CH3OH and C2HsOH was studied using the high-n Rydberg atom time-of-flight (TOF) technique. TOF spectra of nascent H atom products were measured. Simulation of these spectra reveals three different atomic H loss processes: one from hydroxyl H elimination, one from methyl (ethyl) H elimination, and one from secondary dissociation of the methoxy (ethoxy) radical. The relative branching ratio indicates secondary dissociation of ethoxy is less important than that of methoxy. The average angular anisotropy parameter of methanol is negative (with β≈-0.3), indicating the transition dipole moment is perpendicular to the C-O-H plane. The slightly more negative β value of ethanol (with β≈-0.4) implies that ethanol has a longer rotational period. These experimental results indicate that both systems undergo fast internal conversion to the 3s surface after it is excited to the 3px surface, and then dissociate on the 3s surface. The translational energy distribution of the CH3O+H products reveals extensive CH3 rocking or CH3 umbrella excitation in the CH30 radical. However the vibrational structures are not resolved in the C2H5O radical.展开更多
Mercury ion(Hg^(2+)),known as one of the highly toxic and soluble heavy metal ions,is causing serious environmental pollution and irreversible damage to the health.It is urgent to develop some rapid and ultrasensitive...Mercury ion(Hg^(2+)),known as one of the highly toxic and soluble heavy metal ions,is causing serious environmental pollution and irreversible damage to the health.It is urgent to develop some rapid and ultrasensitive methods for detecting trace mercury ions in the environment especially drink water.Surface-enhanced Raman scattering(SERS)is considered as a novel and powerful optical analysis technique since it has the significant advantages of ultra-sensitivity and high specificity.In recent years,the SERS technique and its application in the detection of Hg^(2+)have become more prevalent and compelling.This review provides an overall survey of the development of SERS-based Hg^(2+)detections and presents a summary relating to the basic principles,detection strategies,recent advances and current challenges of SERS for Hg^(2+)detections.展开更多
The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet...The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet orientation and cocatalyst emergence with a high-quality photoanode/cocatalyst interface were realized through an air annealing-assisted strategy to treat atomic layer deposition(ALD)-modified SnSnanosheet arrays.Based on experimental observations and theoretical calculations,the reduced(001)crystal facet of SnSdecreases the recombination of photogenerated carriers in the bulk and improves the carrier separation of the photoanode.Moreover,the unexpectedly formed ZnTiOSfilm decreases the overpotential of the surface OER,reduces interface recombination,and extends the carrier lifetime.These synergistic effects lead to significantly enhanced PEC performance,with a high photocurrent density of 1.97 mA cm^(-2)at 1.23 V vs.reversible hydrogen electrode(RHE)and a low onset potential of 0.21 V vs.RHE,which are superior to reported mostly SnS-based photoanodes.展开更多
文摘A response surface modeling approach for simultaneous optimization of optical purity and yield was applied to the resolution of tartaric acid to study the effects of both the amount of the solvent and the amount of the resolving agent a-methylbenzyl amine on the resolution results. The direction of changing the experimental conditions was determined from the initial response study, and expected high yield of the pure L(+)-tartaric acid-L(-)-a-methylbenzyl amine salt was obtained.
文摘EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.
文摘157 nm photodissociation of jet-cooled CH3OH and C2HsOH was studied using the high-n Rydberg atom time-of-flight (TOF) technique. TOF spectra of nascent H atom products were measured. Simulation of these spectra reveals three different atomic H loss processes: one from hydroxyl H elimination, one from methyl (ethyl) H elimination, and one from secondary dissociation of the methoxy (ethoxy) radical. The relative branching ratio indicates secondary dissociation of ethoxy is less important than that of methoxy. The average angular anisotropy parameter of methanol is negative (with β≈-0.3), indicating the transition dipole moment is perpendicular to the C-O-H plane. The slightly more negative β value of ethanol (with β≈-0.4) implies that ethanol has a longer rotational period. These experimental results indicate that both systems undergo fast internal conversion to the 3s surface after it is excited to the 3px surface, and then dissociate on the 3s surface. The translational energy distribution of the CH3O+H products reveals extensive CH3 rocking or CH3 umbrella excitation in the CH30 radical. However the vibrational structures are not resolved in the C2H5O radical.
基金the National Basic Research Program of China(2012CB933301)the National Natural Science Foundation of China(21475064)+4 种基金the Natural Science Foundation of Jiangsu Province of China(BM2012010)the Natural Science Fund for Colleges and Universities in Jiangsu Province(13KJB140009)the Sci-tech Support Plan of Jiangsu Province(BE2014719)the Research Innovation Program for College Graduates of Jiangsu Province(SJZZ15_0107)the Priority Academic Program Development of Jiangsu Higher Education Institutions(YX03001)
文摘Mercury ion(Hg^(2+)),known as one of the highly toxic and soluble heavy metal ions,is causing serious environmental pollution and irreversible damage to the health.It is urgent to develop some rapid and ultrasensitive methods for detecting trace mercury ions in the environment especially drink water.Surface-enhanced Raman scattering(SERS)is considered as a novel and powerful optical analysis technique since it has the significant advantages of ultra-sensitivity and high specificity.In recent years,the SERS technique and its application in the detection of Hg^(2+)have become more prevalent and compelling.This review provides an overall survey of the development of SERS-based Hg^(2+)detections and presents a summary relating to the basic principles,detection strategies,recent advances and current challenges of SERS for Hg^(2+)detections.
基金support from the National Key Research and Development Program of China(2021YFA1500800)the National Natural Science Foundation of China(52025028)+1 种基金the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionssupport of the National Natural Science Foundation of China(21973006)。
文摘The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet orientation and cocatalyst emergence with a high-quality photoanode/cocatalyst interface were realized through an air annealing-assisted strategy to treat atomic layer deposition(ALD)-modified SnSnanosheet arrays.Based on experimental observations and theoretical calculations,the reduced(001)crystal facet of SnSdecreases the recombination of photogenerated carriers in the bulk and improves the carrier separation of the photoanode.Moreover,the unexpectedly formed ZnTiOSfilm decreases the overpotential of the surface OER,reduces interface recombination,and extends the carrier lifetime.These synergistic effects lead to significantly enhanced PEC performance,with a high photocurrent density of 1.97 mA cm^(-2)at 1.23 V vs.reversible hydrogen electrode(RHE)and a low onset potential of 0.21 V vs.RHE,which are superior to reported mostly SnS-based photoanodes.