In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
In wireless optical communication, effects of scintillation make average Bit Error Rate (BER) deteriorate. To improve system performance,PCCC (Parallel Concatenated Convolutional Code) encoding scheme is employed,...In wireless optical communication, effects of scintillation make average Bit Error Rate (BER) deteriorate. To improve system performance,PCCC (Parallel Concatenated Convolutional Code) encoding scheme is employed,and upper bound on the bit error rate is given by considering the effects of scintillation,APD noise and thermal noise. Simulation results show that the POOC encoding scheme can relieve turbulenceinduced intensity fluctuations and the system performance is improved remarkably.展开更多
The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existin...The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+ Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore, the simulation results for the RS(255,239) +RS(255,239) code and the RS(255,239) +RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction, moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes, and their signal to noise ratio gains are respectively 2-3 dB more than that of the RS(255,239)code at the bit error rate of 1 × 10^-13. Finally, the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.展开更多
In this paper, a photoelectric signal obtained scheme via equator triangle pattern engraved on rotor is discussed and the mathematic model is deduced in the case which is deflexion between rotor axis and the coordinat...In this paper, a photoelectric signal obtained scheme via equator triangle pattern engraved on rotor is discussed and the mathematic model is deduced in the case which is deflexion between rotor axis and the coordinate frame of case. The deflexion error and coupling error under the situation are analyzed. Finally, three methods of engraving based on the spherical triangle pattern are presented. The error models of various methods are built up and the simulation curves are provided respectively. We have done the primary experiments on the surface of rotor using this method. It can be seen from the enlarged figures that the rim of the pattern is smooth and the demand of sensor resolution is satisfied by and large. The results of study supply reference for signal obtaining.展开更多
This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip.The system is capable of transmitting 10 Gbps bidirectional date over hundreds of...This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip.The system is capable of transmitting 10 Gbps bidirectional date over hundreds of meters.It can provide error detection and correction by using 8B/10B encoding and Cyclical Redundancy Checking (CRC) encoding when only single-channel fails.The design scheme has already passed the simulation in FPGA.This technique is useful to enhance the capability and the reliability of the very short reach (VSR) transmission systems.展开更多
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘In wireless optical communication, effects of scintillation make average Bit Error Rate (BER) deteriorate. To improve system performance,PCCC (Parallel Concatenated Convolutional Code) encoding scheme is employed,and upper bound on the bit error rate is given by considering the effects of scintillation,APD noise and thermal noise. Simulation results show that the POOC encoding scheme can relieve turbulenceinduced intensity fluctuations and the system performance is improved remarkably.
文摘The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+ Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore, the simulation results for the RS(255,239) +RS(255,239) code and the RS(255,239) +RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction, moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes, and their signal to noise ratio gains are respectively 2-3 dB more than that of the RS(255,239)code at the bit error rate of 1 × 10^-13. Finally, the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.
文摘In this paper, a photoelectric signal obtained scheme via equator triangle pattern engraved on rotor is discussed and the mathematic model is deduced in the case which is deflexion between rotor axis and the coordinate frame of case. The deflexion error and coupling error under the situation are analyzed. Finally, three methods of engraving based on the spherical triangle pattern are presented. The error models of various methods are built up and the simulation curves are provided respectively. We have done the primary experiments on the surface of rotor using this method. It can be seen from the enlarged figures that the rim of the pattern is smooth and the demand of sensor resolution is satisfied by and large. The results of study supply reference for signal obtaining.
文摘This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip.The system is capable of transmitting 10 Gbps bidirectional date over hundreds of meters.It can provide error detection and correction by using 8B/10B encoding and Cyclical Redundancy Checking (CRC) encoding when only single-channel fails.The design scheme has already passed the simulation in FPGA.This technique is useful to enhance the capability and the reliability of the very short reach (VSR) transmission systems.