Hafnium oxide (HfO2) thin films were deposited on quartz substrate by radio frequency magnetron sputtering with power from 160 W to 240 W. The optical and microstructural properties of samples before and after anneali...Hafnium oxide (HfO2) thin films were deposited on quartz substrate by radio frequency magnetron sputtering with power from 160 W to 240 W. The optical and microstructural properties of samples before and after annealing were characterized by XRD, XPS, UV-VISNIR spectrophotometer and ellipsometer. The results show optical transmittances with low absorption in wavelength range above λ=200 nm for all samples. The appropriate annealing can transfer the amorphous state of as-deposited films to the crystal film, contribute to the growth of nanocrystalline and compressive stress, optimize the stoichiometry of the film and systematically improve film density and the refractive index. In consideration of the stability of proper refractive index (>2) and high optical transmittance in UV band, HfO2 films deposited approximately at 220 W can be used in UV anti-reflection system.展开更多
Using pyromellitic dianhydride (PMDA) and 4,4’ diaminodiphenyl ether (ODA) as monomer materials, polyimide thin films have been prepared onto glass substrate by vapor deposition polymerization under a vacuum of 2.666...Using pyromellitic dianhydride (PMDA) and 4,4’ diaminodiphenyl ether (ODA) as monomer materials, polyimide thin films have been prepared onto glass substrate by vapor deposition polymerization under a vacuum of 2.666×10 -3 Pa and thermal curing of polyamic acid film in a vacuum at temperature of 150~200 ℃ for 60 min. In this process, the polymerization can be carried out through controlling the stoichiometric ratio, heating time and deposition ratio of the two monomers. The composition, the structure and properties of the polyimide films are investigated with IR spectrum, XRD, and SEM methods. The results show that the polyimide films by vapor deposition polymerization have good electrical properties and thermal stability. Therefore, the vapor deposition polymerization process is considered as a possible method of polymerization for other polymers.展开更多
The preparation and development of novel optical thin films are of great importance to functional optical and opto-electric components requiring a low refractive index.In this study, a typical metal-organic framework...The preparation and development of novel optical thin films are of great importance to functional optical and opto-electric components requiring a low refractive index.In this study, a typical metal-organic framework(MOF), MIL-101(Cr), is selected as the research model. The corresponding MOF nanoparticles are prepared by a hydrothermal method and the optical thin films are successfully prepared by spincoating. The optical properties of the corresponding MOF thin films are controlled by changing the type of functional groups on the benzene ring of the ligand(terephthalic acid) on MOFs.The functional groups are hydrogen atoms(H),electron donating groups(-NH_2,-OH) and electron withdrawing groups(-NO_2,-(NO_2)_2 or F_4), respectively. It is found that the effective refractive index(n_(eff)) of MOF thin films decreases along with the increasing voids among MOF nanoparticles. In addition, the extinction coefficient(k) increases with the addition of electron donating groups, and decreases with the addition of electron withdrawing groups. Among the MOFs used in this study, the n_eff of NO_2-MIL-101(Cr) containing electron withdrawing groups is as low as ~1.2, and value of k is particularly low, which suggests its potential application in antireflective devices. In addition, the intrinsic refractive index(n_(dease)) of the dense MOF materials evaluated according to their porosity increases with the number of the functional groups, and the n_(dense) of the two nitro-substituted MOFs is greater than that of the single nitro-substituted one, and the latter is bigger than that of hydroxyl-substituted one, which is close to that of amino-functionalized one. The diversity of ligands in MOFs makes them a promising new generation of optical materials.展开更多
Bacteriorhodopsin (BR) is a photochromic membrane protein isolated from a strain of halobacteria.Embedment of BR into a polymeric matrix enables the application of the photoactive protein as an optical material.In thi...Bacteriorhodopsin (BR) is a photochromic membrane protein isolated from a strain of halobacteria.Embedment of BR into a polymeric matrix enables the application of the photoactive protein as an optical material.In this work,a chemically crosslinked BR/gelatin film was prepared.The cross-linked film was found to be highly stable even under extreme alkaline or detergent circumstance while BR maintained its bioactivity.The treatments of base and detergents also led to dramatic prolongation of the lifetime of M photoproduct,which might be beneficial for potential applications such as information storage.The BR/gelatin film was demonstrated to tentatively record a simple pattern.展开更多
A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This typ...A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.展开更多
基金supported by the Natural Science Foundation of Fujian Province of China(No.2018J05113)the Fundamental Research Funds for the Central Universities(No.20720160123,20720170013,and No.20720170084)
文摘Hafnium oxide (HfO2) thin films were deposited on quartz substrate by radio frequency magnetron sputtering with power from 160 W to 240 W. The optical and microstructural properties of samples before and after annealing were characterized by XRD, XPS, UV-VISNIR spectrophotometer and ellipsometer. The results show optical transmittances with low absorption in wavelength range above λ=200 nm for all samples. The appropriate annealing can transfer the amorphous state of as-deposited films to the crystal film, contribute to the growth of nanocrystalline and compressive stress, optimize the stoichiometry of the film and systematically improve film density and the refractive index. In consideration of the stability of proper refractive index (>2) and high optical transmittance in UV band, HfO2 films deposited approximately at 220 W can be used in UV anti-reflection system.
文摘Using pyromellitic dianhydride (PMDA) and 4,4’ diaminodiphenyl ether (ODA) as monomer materials, polyimide thin films have been prepared onto glass substrate by vapor deposition polymerization under a vacuum of 2.666×10 -3 Pa and thermal curing of polyamic acid film in a vacuum at temperature of 150~200 ℃ for 60 min. In this process, the polymerization can be carried out through controlling the stoichiometric ratio, heating time and deposition ratio of the two monomers. The composition, the structure and properties of the polyimide films are investigated with IR spectrum, XRD, and SEM methods. The results show that the polyimide films by vapor deposition polymerization have good electrical properties and thermal stability. Therefore, the vapor deposition polymerization process is considered as a possible method of polymerization for other polymers.
基金financially supported by the National Natural Science Foundation of China (21203247 and 21573285)research project of National University of Defense Technology (ZK16-03-51)
文摘The preparation and development of novel optical thin films are of great importance to functional optical and opto-electric components requiring a low refractive index.In this study, a typical metal-organic framework(MOF), MIL-101(Cr), is selected as the research model. The corresponding MOF nanoparticles are prepared by a hydrothermal method and the optical thin films are successfully prepared by spincoating. The optical properties of the corresponding MOF thin films are controlled by changing the type of functional groups on the benzene ring of the ligand(terephthalic acid) on MOFs.The functional groups are hydrogen atoms(H),electron donating groups(-NH_2,-OH) and electron withdrawing groups(-NO_2,-(NO_2)_2 or F_4), respectively. It is found that the effective refractive index(n_(eff)) of MOF thin films decreases along with the increasing voids among MOF nanoparticles. In addition, the extinction coefficient(k) increases with the addition of electron donating groups, and decreases with the addition of electron withdrawing groups. Among the MOFs used in this study, the n_eff of NO_2-MIL-101(Cr) containing electron withdrawing groups is as low as ~1.2, and value of k is particularly low, which suggests its potential application in antireflective devices. In addition, the intrinsic refractive index(n_(dease)) of the dense MOF materials evaluated according to their porosity increases with the number of the functional groups, and the n_(dense) of the two nitro-substituted MOFs is greater than that of the single nitro-substituted one, and the latter is bigger than that of hydroxyl-substituted one, which is close to that of amino-functionalized one. The diversity of ligands in MOFs makes them a promising new generation of optical materials.
基金supported by the National Basic Research Rrogram of China (973 Program,2009CB930000)National Natural Science Foundation of China (21034002)
文摘Bacteriorhodopsin (BR) is a photochromic membrane protein isolated from a strain of halobacteria.Embedment of BR into a polymeric matrix enables the application of the photoactive protein as an optical material.In this work,a chemically crosslinked BR/gelatin film was prepared.The cross-linked film was found to be highly stable even under extreme alkaline or detergent circumstance while BR maintained its bioactivity.The treatments of base and detergents also led to dramatic prolongation of the lifetime of M photoproduct,which might be beneficial for potential applications such as information storage.The BR/gelatin film was demonstrated to tentatively record a simple pattern.
基金supported by National Basic Research Program of China(Grant No.2010CB923202)
文摘A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.