An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface ...An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface terminals respectively.The chain-length of alkane exceeds the bond-length of surface functionalities T(x=O,-OH,-F)so as to introduce intra-flake and inter-flake strains into Ti_(3)C_(2)T_(x)MXene.The electronic microscopy(TEM/AFM)shows obvious edge-fold and tensile/compressive deformation of flake.The alkane termination increases the intrinsic absorbance of Ti_(3)C_(2)T_(x)MXene from no more than 50%up to more than 99%in the mid-wavelength in⁃frared region from 2.5μm to 4.5μm.Such an absorption enhancement attributes to the reduce of infrared reflec⁃tance of Ti_(3)C_(2)T_(x)MXene.The C-H bond skeleton vibration covers the aforementioned region and partially reduces the surface reflectance.Meanwhile,the flake deformation owing to edge-fold and tensile/compression increases the specific surface area so as to increase the absorption as well.These results have applicable value in the area of mid-infrared camouflage.展开更多
Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of ...Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.展开更多
By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (...By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (0.633 μm) wavelengths in the same optical path with a tunable double wave He Ne laser designed by ourselves. The measuring principle and the device are describod.展开更多
Numerical simulation has been performed on the optical transmission enhancement properties of a one-dimensional Ag film single slit structure with grooves. The results show that the position,depth and number of the gr...Numerical simulation has been performed on the optical transmission enhancement properties of a one-dimensional Ag film single slit structure with grooves. The results show that the position,depth and number of the grooves have great influence on the optical transmission,and surface plasmon polariton and resonance mode are the primary factors. The maximal extinction ratio of 35.8 dB is achieved in the single slit structure by adjusting groove depth.展开更多
This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic van...This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.展开更多
Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by ...Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.展开更多
The separation between s- and p-polarization components invariably affects thin film edge filters used for tilted incidence and is a difficult problem for many applications, especially for optical communication. This ...The separation between s- and p-polarization components invariably affects thin film edge filters used for tilted incidence and is a difficult problem for many applications, especially for optical communication. This paper presents a novel design method to obtain edge filters with non-polarization at incidence angle of 45°. The polarization separation at 50% trans-mittance for a long-wave-pass filter and a short-wave-pass filter is 0.3 nm and 0.1 nm respectively. The design method is based on a broadband Fabry-Perot thin-film interference filter in which the higher or lower interference band at both sides of the main transmittance peak can be used for initial design of long-wave-pass filter or short-wave-pass filter and then can be refined to reduce the transmittance ripples. The spacer 2H2L2H or 2L2H2L of the filter is usually taken. Moreover, the method for expanding the bandwidth of rejection and transmission is explained. The bandwidth of 200 nm for both rejection region and transmission band is obtained at wavelength 1550 nm. In this way, the long-wave-pass and short-wave-pass edge filters with zero separation between two polarization components can easily be fabricated.展开更多
Sb2O3 doped ZnO thin film was prepared by RF magnetron sputtering technique.The influence of Sb2O3 on the structure and the optical absorption of ZnO thin film was studied by XPS,XRD apparatuses and UV-Vis spectrophot...Sb2O3 doped ZnO thin film was prepared by RF magnetron sputtering technique.The influence of Sb2O3 on the structure and the optical absorption of ZnO thin film was studied by XPS,XRD apparatuses and UV-Vis spectrophotometer.The results show that doped Sb2O3 has affected atomic and electronic structures,growth modes of crystal grains and optical absorption of ZnO.The element Sb exists in many forms in the film including transpositional atoms and compounds such as Sb2O3,Zn7Sb2O 14 etc.ZnO crystal grains grow in mixing directions.The lattice relaxation and the content of second phases increase when more Sb is doped.The UVA absorption of doped ZnO thin film increases obviously.The ultraviolet absorption peak narrows,absorption intensity increases,the absorption margin becomes steep and moves to shorter wavelength of about 5 nm,and the visible absorption increases in some sort.展开更多
The relaxation luminescence of ZnS:Er 3+ thin films is studied with luminescence dynamics model. The excitation and emission processes of Er 3+ in ZnS host are described through the resonant energy transfer method. Ta...The relaxation luminescence of ZnS:Er 3+ thin films is studied with luminescence dynamics model. The excitation and emission processes of Er 3+ in ZnS host are described through the resonant energy transfer method. Taking the energy storing effect of the traps into account, an expression is obtained by using the convolution formula, which may describe luminescence decay process containing the multiple relaxation luminescence peaks. The experimental results confirm that the relaxation characteristics of the electroluminescence are related to the carriers captured by the bulk traps.展开更多
Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19...Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.展开更多
In this paper, a series of boron doped microcrystalline hydrogenated silicon-germanium (p-μc-Si1-xGex:H) was deposited by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) from SiH4 and G...In this paper, a series of boron doped microcrystalline hydrogenated silicon-germanium (p-μc-Si1-xGex:H) was deposited by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) from SiH4 and GeF4 mixtures. The effect of GeF4 concentration on films' composition, structure and electrical properties was studied. The results show that with the increase of GeF4 concentration, the Ge fraction x increases. The dark conductivity and crystalline volume fraction increase first, and then decrease. When the GC is 4%, p-μc-Si1-xGex:H material with high conductivity, low activation energy (σ= 1.68 S/cm, E8=0.047 eV), high crystalline volume fraction (60%) and with an average transmission coefficient over the long wave region reaching 0.9 at the thickness of 72 nm was achieved. The experimental results were discussed in detail.展开更多
Due to their particular optical characteristics,metallic island films have the potential to significantly increase the energy conversion efficiency of solar cell.We experimentally and theoretically investigated the ef...Due to their particular optical characteristics,metallic island films have the potential to significantly increase the energy conversion efficiency of solar cell.We experimentally and theoretically investigated the effect of substrate temperature on the morphologies and optical properties of the silver island films.At low temperature,below 300 ℃,as the substrate temperature increases.Compared to the films prepared at room temperature,the sizes of nanoparticles decrease and the Absorption peaks shift to shorter wavelength accompanied by an increase density resulting in a 150% Absorption efficiency.As the substrate temperature goes up to 300 ℃,nanoparticles with larger in-plan(X-Y)dimensions are formed,the number density decreases and the Absorption peaks redshift but the Absorption efficiency is still 10% higher.Numerical simulation reveals that these behaviors are a consequence of morphologies transformation.展开更多
From sevenal models about damage mechanism, the damage mechanism of optical films and the factors which affect the damage threshold are described experimentally and theoretically. Some reasonable proposals are given i...From sevenal models about damage mechanism, the damage mechanism of optical films and the factors which affect the damage threshold are described experimentally and theoretically. Some reasonable proposals are given in this paper on how to select the high-threshold films.展开更多
Hafnium oxide (HfO2) thin films were deposited on quartz substrate by radio frequency magnetron sputtering with power from 160 W to 240 W. The optical and microstructural properties of samples before and after anneali...Hafnium oxide (HfO2) thin films were deposited on quartz substrate by radio frequency magnetron sputtering with power from 160 W to 240 W. The optical and microstructural properties of samples before and after annealing were characterized by XRD, XPS, UV-VISNIR spectrophotometer and ellipsometer. The results show optical transmittances with low absorption in wavelength range above λ=200 nm for all samples. The appropriate annealing can transfer the amorphous state of as-deposited films to the crystal film, contribute to the growth of nanocrystalline and compressive stress, optimize the stoichiometry of the film and systematically improve film density and the refractive index. In consideration of the stability of proper refractive index (>2) and high optical transmittance in UV band, HfO2 films deposited approximately at 220 W can be used in UV anti-reflection system.展开更多
The superluminescent diode has been fabricated by applying an AR coating to the output facet of the semiconductor laser for the purpose of eliminating or suitably reducing the optical feedback. An exact method for mea...The superluminescent diode has been fabricated by applying an AR coating to the output facet of the semiconductor laser for the purpose of eliminating or suitably reducing the optical feedback. An exact method for measuring the modal reflectivity of the antireflection coating to a laser diode is described. It is based on measurements of the spectrum modulation depth of the resulting superluminescent diode output spectrum at arbitrary injection current, and modal reflectivity of less than 3 × 10-4 is obtained.展开更多
A new method to determine the optical constant and thickness of thin films is proposed. Based on the Fresnel’s optical expression, the improved flexible tolerance method(FTM) is employed in the case of a digital mode...A new method to determine the optical constant and thickness of thin films is proposed. Based on the Fresnel’s optical expression, the improved flexible tolerance method(FTM) is employed in the case of a digital model of thin film to fit the curve of measured reflectance spectrum. The simulation results show a satisfactory correlation of the optical constant with the thickness of the target film. By taking the influence of nonlinear condition into account as well as more direct and indirect limitation, the precision and value-searching efficiency have been improved. Furthermore, the problem of dimension degradation, which exists in “Downhill Simplex”, has been successfully avoided. No initial input is needed for the procedure of optimization to achieve optical solution, which makes the whole processing of value calculation much more convenient and efficient.展开更多
Owing to both of its high carrier concentration and large band gap, ZnO:Al (ZAO) films which is an n-type degenerate semiconductor, exhibits low resistance and high transmittance in the visible range. This work studie...Owing to both of its high carrier concentration and large band gap, ZnO:Al (ZAO) films which is an n-type degenerate semiconductor, exhibits low resistance and high transmittance in the visible range. This work studies the crystal structure, optical and electrical properties and preparation methods of ZAO films, and discusses the existing problems and application prospective of ZAO films.展开更多
In this paper,the effects of Ar ion bombardment during the electron beam evaporation deposition of the amorphous Si film were investigated.It was found that the bombardment increases the light absorption by two to ele...In this paper,the effects of Ar ion bombardment during the electron beam evaporation deposition of the amorphous Si film were investigated.It was found that the bombardment increases the light absorption by two to eleven times and increases the conductance of the film by 3 000 times.This has never been reported before of amorphous Si with electron beam evaporation deposition.展开更多
The a-Si∶H films with different thickness smaller than 1 μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film prop...The a-Si∶H films with different thickness smaller than 1 μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity, photoconductivity and threshold voltage increase, the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ratio of on/off state first maximize and then reduce.展开更多
文摘An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface terminals respectively.The chain-length of alkane exceeds the bond-length of surface functionalities T(x=O,-OH,-F)so as to introduce intra-flake and inter-flake strains into Ti_(3)C_(2)T_(x)MXene.The electronic microscopy(TEM/AFM)shows obvious edge-fold and tensile/compressive deformation of flake.The alkane termination increases the intrinsic absorbance of Ti_(3)C_(2)T_(x)MXene from no more than 50%up to more than 99%in the mid-wavelength in⁃frared region from 2.5μm to 4.5μm.Such an absorption enhancement attributes to the reduce of infrared reflec⁃tance of Ti_(3)C_(2)T_(x)MXene.The C-H bond skeleton vibration covers the aforementioned region and partially reduces the surface reflectance.Meanwhile,the flake deformation owing to edge-fold and tensile/compression increases the specific surface area so as to increase the absorption as well.These results have applicable value in the area of mid-infrared camouflage.
基金supported by open research fund from Guangxi Key Laboratory of New Energy and Building Energy Saving, China
文摘Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.
文摘By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (0.633 μm) wavelengths in the same optical path with a tunable double wave He Ne laser designed by ourselves. The measuring principle and the device are describod.
基金the Key Program of National Natural Science of China(Grant No.50734007)the Research Foundation from Ministry of Education of China (Grant No.208133)the Natural Science Foundation of Yunnan Province (Grant No.2007F005M)
文摘Numerical simulation has been performed on the optical transmission enhancement properties of a one-dimensional Ag film single slit structure with grooves. The results show that the position,depth and number of the grooves have great influence on the optical transmission,and surface plasmon polariton and resonance mode are the primary factors. The maximal extinction ratio of 35.8 dB is achieved in the single slit structure by adjusting groove depth.
基金Project supported by the National Natural Science Foundation of China (Grant No 60676033).
文摘This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.
基金(No. 2004C31107) supported by the Science and Technology Program of Zhejiang Province, China
文摘Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.
基金Project (No. 60078001) supported by the National Natural ScienceFoundation of China
文摘The separation between s- and p-polarization components invariably affects thin film edge filters used for tilted incidence and is a difficult problem for many applications, especially for optical communication. This paper presents a novel design method to obtain edge filters with non-polarization at incidence angle of 45°. The polarization separation at 50% trans-mittance for a long-wave-pass filter and a short-wave-pass filter is 0.3 nm and 0.1 nm respectively. The design method is based on a broadband Fabry-Perot thin-film interference filter in which the higher or lower interference band at both sides of the main transmittance peak can be used for initial design of long-wave-pass filter or short-wave-pass filter and then can be refined to reduce the transmittance ripples. The spacer 2H2L2H or 2L2H2L of the filter is usually taken. Moreover, the method for expanding the bandwidth of rejection and transmission is explained. The bandwidth of 200 nm for both rejection region and transmission band is obtained at wavelength 1550 nm. In this way, the long-wave-pass and short-wave-pass edge filters with zero separation between two polarization components can easily be fabricated.
文摘Sb2O3 doped ZnO thin film was prepared by RF magnetron sputtering technique.The influence of Sb2O3 on the structure and the optical absorption of ZnO thin film was studied by XPS,XRD apparatuses and UV-Vis spectrophotometer.The results show that doped Sb2O3 has affected atomic and electronic structures,growth modes of crystal grains and optical absorption of ZnO.The element Sb exists in many forms in the film including transpositional atoms and compounds such as Sb2O3,Zn7Sb2O 14 etc.ZnO crystal grains grow in mixing directions.The lattice relaxation and the content of second phases increase when more Sb is doped.The UVA absorption of doped ZnO thin film increases obviously.The ultraviolet absorption peak narrows,absorption intensity increases,the absorption margin becomes steep and moves to shorter wavelength of about 5 nm,and the visible absorption increases in some sort.
基金Foundationitem :NaturalScienceFoundationofFujianProvince(GrantNo .A970 0 6) China
文摘The relaxation luminescence of ZnS:Er 3+ thin films is studied with luminescence dynamics model. The excitation and emission processes of Er 3+ in ZnS host are described through the resonant energy transfer method. Taking the energy storing effect of the traps into account, an expression is obtained by using the convolution formula, which may describe luminescence decay process containing the multiple relaxation luminescence peaks. The experimental results confirm that the relaxation characteristics of the electroluminescence are related to the carriers captured by the bulk traps.
文摘Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.
基金National Basic Research Program of China ("973" Project, No.2006CB202602, 2006CB202603)the National Natural Science Foundation of China (No. 60437030)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry.
文摘In this paper, a series of boron doped microcrystalline hydrogenated silicon-germanium (p-μc-Si1-xGex:H) was deposited by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) from SiH4 and GeF4 mixtures. The effect of GeF4 concentration on films' composition, structure and electrical properties was studied. The results show that with the increase of GeF4 concentration, the Ge fraction x increases. The dark conductivity and crystalline volume fraction increase first, and then decrease. When the GC is 4%, p-μc-Si1-xGex:H material with high conductivity, low activation energy (σ= 1.68 S/cm, E8=0.047 eV), high crystalline volume fraction (60%) and with an average transmission coefficient over the long wave region reaching 0.9 at the thickness of 72 nm was achieved. The experimental results were discussed in detail.
基金The Distinguished Youth Foundation of Hunan Province(03JJY1008)The Natural Science Foundation of Hunan Province(06JJ2034)
文摘Due to their particular optical characteristics,metallic island films have the potential to significantly increase the energy conversion efficiency of solar cell.We experimentally and theoretically investigated the effect of substrate temperature on the morphologies and optical properties of the silver island films.At low temperature,below 300 ℃,as the substrate temperature increases.Compared to the films prepared at room temperature,the sizes of nanoparticles decrease and the Absorption peaks shift to shorter wavelength accompanied by an increase density resulting in a 150% Absorption efficiency.As the substrate temperature goes up to 300 ℃,nanoparticles with larger in-plan(X-Y)dimensions are formed,the number density decreases and the Absorption peaks redshift but the Absorption efficiency is still 10% higher.Numerical simulation reveals that these behaviors are a consequence of morphologies transformation.
文摘From sevenal models about damage mechanism, the damage mechanism of optical films and the factors which affect the damage threshold are described experimentally and theoretically. Some reasonable proposals are given in this paper on how to select the high-threshold films.
基金supported by the Natural Science Foundation of Fujian Province of China(No.2018J05113)the Fundamental Research Funds for the Central Universities(No.20720160123,20720170013,and No.20720170084)
文摘Hafnium oxide (HfO2) thin films were deposited on quartz substrate by radio frequency magnetron sputtering with power from 160 W to 240 W. The optical and microstructural properties of samples before and after annealing were characterized by XRD, XPS, UV-VISNIR spectrophotometer and ellipsometer. The results show optical transmittances with low absorption in wavelength range above λ=200 nm for all samples. The appropriate annealing can transfer the amorphous state of as-deposited films to the crystal film, contribute to the growth of nanocrystalline and compressive stress, optimize the stoichiometry of the film and systematically improve film density and the refractive index. In consideration of the stability of proper refractive index (>2) and high optical transmittance in UV band, HfO2 films deposited approximately at 220 W can be used in UV anti-reflection system.
文摘The superluminescent diode has been fabricated by applying an AR coating to the output facet of the semiconductor laser for the purpose of eliminating or suitably reducing the optical feedback. An exact method for measuring the modal reflectivity of the antireflection coating to a laser diode is described. It is based on measurements of the spectrum modulation depth of the resulting superluminescent diode output spectrum at arbitrary injection current, and modal reflectivity of less than 3 × 10-4 is obtained.
文摘A new method to determine the optical constant and thickness of thin films is proposed. Based on the Fresnel’s optical expression, the improved flexible tolerance method(FTM) is employed in the case of a digital model of thin film to fit the curve of measured reflectance spectrum. The simulation results show a satisfactory correlation of the optical constant with the thickness of the target film. By taking the influence of nonlinear condition into account as well as more direct and indirect limitation, the precision and value-searching efficiency have been improved. Furthermore, the problem of dimension degradation, which exists in “Downhill Simplex”, has been successfully avoided. No initial input is needed for the procedure of optimization to achieve optical solution, which makes the whole processing of value calculation much more convenient and efficient.
基金Funded by the foundation for key projects in 2000 of the Science and Technology Committee of Chongqing China (No.2000-6214).
文摘Owing to both of its high carrier concentration and large band gap, ZnO:Al (ZAO) films which is an n-type degenerate semiconductor, exhibits low resistance and high transmittance in the visible range. This work studies the crystal structure, optical and electrical properties and preparation methods of ZAO films, and discusses the existing problems and application prospective of ZAO films.
基金Supported by National Key Basic Research Plan of China (G200068302) ,Beijing Education Committee funding (KM200310005009) ,Beijing Municipal Science & Technology commission fun-ding(D0404003040221)
文摘In this paper,the effects of Ar ion bombardment during the electron beam evaporation deposition of the amorphous Si film were investigated.It was found that the bombardment increases the light absorption by two to eleven times and increases the conductance of the film by 3 000 times.This has never been reported before of amorphous Si with electron beam evaporation deposition.
文摘The a-Si∶H films with different thickness smaller than 1 μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity, photoconductivity and threshold voltage increase, the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ratio of on/off state first maximize and then reduce.