In this letter, the superfluid-Mott-insulator phase transition of two-species cold bosonic atoms in an optical lattices is studied. The Hamiltonian of this model is diagonalized by means of Bogliubov transformations a...In this letter, the superfluid-Mott-insulator phase transition of two-species cold bosonic atoms in an optical lattices is studied. The Hamiltonian of this model is diagonalized by means of Bogliubov transformations and by the inversion symmetry of the optical lattice, the energy spectrum of this system is obtained. From She energy gap of the excitation spectrum, the quantum phase transition condition is obtained and it is determined by the competition between the interatomic repulsions and the tunnel coupling. It is found that there exists an ordinary fluid phase when taking the zero wave-vector limit.展开更多
Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, rel...Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, reliable and non-destructive way to identify the atomically thin flakes among a crowd of thick flakes. In this work, we provide general guidelines to identify ultrathin flakes of TaSe2 by means of optical microscopy and Raman spectroscopy. Additionally, we determine the optimal substrates to facilitate the optical identification of atomically thin TaSe2 crystals. Experimental realization and isolation of ultrathin layers of TaSe2 enables future studies on the role of the dimensionality in interesting phenomena such as superconductivity and charge density waves.展开更多
基金*The project partly supported by National Natural Science Foundation of China under Grant No. 10574060 and the Natural Science Foundation of Shandong Province of China under Grant No. Y2003A02
文摘In this letter, the superfluid-Mott-insulator phase transition of two-species cold bosonic atoms in an optical lattices is studied. The Hamiltonian of this model is diagonalized by means of Bogliubov transformations and by the inversion symmetry of the optical lattice, the energy spectrum of this system is obtained. From She energy gap of the excitation spectrum, the quantum phase transition condition is obtained and it is determined by the competition between the interatomic repulsions and the tunnel coupling. It is found that there exists an ordinary fluid phase when taking the zero wave-vector limit.
文摘Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, reliable and non-destructive way to identify the atomically thin flakes among a crowd of thick flakes. In this work, we provide general guidelines to identify ultrathin flakes of TaSe2 by means of optical microscopy and Raman spectroscopy. Additionally, we determine the optimal substrates to facilitate the optical identification of atomically thin TaSe2 crystals. Experimental realization and isolation of ultrathin layers of TaSe2 enables future studies on the role of the dimensionality in interesting phenomena such as superconductivity and charge density waves.