期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的滤光片型高光谱成像技术 被引量:1
1
作者 林学利 王子林 +3 位作者 邹艳霞 刘豪 郝然 金尚忠 《激光与光电子学进展》 CSCD 北大核心 2023年第10期460-468,共9页
相较于传统快照式高光谱成像技术,基于深度学习的滤光片型高光谱成像技术仅使用深度学习和极少的滤光片进行光谱采样,便能重建高光谱,且滤光片直接与图像传感器集成,具有结构简单、成像速度快等优点。但现有的研究大多直接以原高光谱成... 相较于传统快照式高光谱成像技术,基于深度学习的滤光片型高光谱成像技术仅使用深度学习和极少的滤光片进行光谱采样,便能重建高光谱,且滤光片直接与图像传感器集成,具有结构简单、成像速度快等优点。但现有的研究大多直接以原高光谱成像仪拍摄的图像为数据集,而未对数据集进行预处理,忽略了原高光谱成像仪对数据集的影响。因此,通过对原高光谱成像仪成像原理进行研究来对数据集进行预处理,把高光谱图像转换为辐射功率谱,从而消除原高光谱成像仪的影响,增强了模型鲁棒性。另外,鉴于滤光片存在光谱响应函数平滑性差而难以加工的问题,将平滑性约束纳入误差函数的设计中,使优化所得的滤光片具有平滑的光谱响应函数且易于加工。 展开更多
关键词 光谱学 高光谱成像 计算光谱学 光学逆向设计
原文传递
Inverse design of an integrated-nanophotonics optical neural network 被引量:11
2
作者 Yurui Qu Huanzheng Zhu +4 位作者 Yichen Shen Jin Zhang Chenning Tao Pintu Ghosh Min Qiu 《Science Bulletin》 SCIE EI CAS CSCD 2020年第14期1177-1183,M0004,共8页
Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations o... Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore’s Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint.The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error < 10-4 and a mere 4*4 um2 footprint.Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing "Kernel Matrix", which can achieve 97.1% accuracy on the classic image classification dataset MNIST. 展开更多
关键词 Optical neural networks Deep learning Inverse design Integrated nanophotonics Silicon photonics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部