This paper discussed the main parameters contributing to the measurement uncertainty of interferometric distance meter (IDM). A simple and robust set-up is used to measure distance of about 12 cm with an expanded un...This paper discussed the main parameters contributing to the measurement uncertainty of interferometric distance meter (IDM). A simple and robust set-up is used to measure distance of about 12 cm with an expanded uncertainty ( k = 2) of ±16.4 μm. The measurement uncertainty is found to be limited by the wavelength measurement accuracy. This set-up can be used to measure distances up to 56 m. It also enables easy determination of the point of equal path difference between the measuring and the reference arms. LabVIEW program is used for counting of the fringes and applying fast Fourier transfor- mation (FFT) to perform frequency selective filtration to the noise. Although the reported uncertainty does not represent the state-of-art uncertainty reached for similar distance, the measurement provides traceable measurement to the unit of length, the meter.展开更多
The authenticity of 91 wines produced in Cyprus from both indigenous and other vine varieties were investigated by a holistic approach, using, advanced technology such as SNIF-NMR (site-specific natural isotopic frac...The authenticity of 91 wines produced in Cyprus from both indigenous and other vine varieties were investigated by a holistic approach, using, advanced technology such as SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and 1R-MS (isotope ratio-mass spectrometry) for the determination of the stable isotopes and ICP (inductively coupled plasma spectroscopy) for some heavy metals. The spectroscopic characteristics were evaluated statistically using different chemometric methods. The dependency of the D/H (deuterium/hydrogen) ratio of the methylene site in the ethanol molecule (D/H)ll and also theδ ^18O values of the wine water, were the most useful discriminators. Isotopic results allow us to have a complete idea about the regional variability of the isotopes. Among the metals, Ni followed by Pb was the ones with the highest discrimination value. The determined concentrations of Pb, Ni, Cr and Cd that are related to the safety of wines were within the acceptable limits that have been established by the OIV (international organization of vine and wine) or comparable with the results of the wines of other European countries. The study of the correlation between the load of heavy metals and isotopes in wines showed a dependence on the grape variety but not the geographical location of the vineyard. This is probably due to the close proximity of wine regions in Cyprus.展开更多
The survival of Dunhuang Oasis is largely determined by the evolution of sand dunes in the southern edge of the oasis, mainly composed of shield dunes and mega pyramid dunes, which occupy twothirds and one-third of th...The survival of Dunhuang Oasis is largely determined by the evolution of sand dunes in the southern edge of the oasis, mainly composed of shield dunes and mega pyramid dunes, which occupy twothirds and one-third of the area, respectively. However, few studies have focused on dynamics of these dunes, especially in terms of quantification. So the theoretical basis of sand-control engineering is relatively limited. Here we present the characteristics of dune dynamics of a shield dune and mega pyramid dune in the southern edge of Dunhuang Oasis during April 2014-April 2016 based on measurement data of a 3-D laser scanner. Results indicate that the volume of the shield dune decreased during the monitoring period of two years, and the gravity centers of the monitored shield dune moved windward, indicating that sand was transported toward the oasis. Conversely, the dune volume of the mega pyramid dune increased and the gravity center presented no prominent movement, indicating that the megapyramid dune was relatively stable and its migration toward the oasis was not notable. Thus, compared with mega pyramid dunes, shield dunes in the southern edge of Dunhuang Oasis are identified as a more significant sand source endangering the protection of the oasis, and sand-control engineering should mainly focus on these shield dunes.展开更多
An investigation of the properties ofa LiNbO3 photoelastic waveguide via the acceleration-induced effect is presented. A novel three-component hybrid-integrated optical accelerometer based on a Mach-Zehnder interferom...An investigation of the properties ofa LiNbO3 photoelastic waveguide via the acceleration-induced effect is presented. A novel three-component hybrid-integrated optical accelerometer based on a Mach-Zehnder interferometer with a LiNbO3 photoelastic waveguide has been designed, which is capable of detecting seismic acceleration in high-accuracy seismic exploration. The Mach-Zehnder interferometer was successfully fabricated and a lighting test used to check its quality. The frequency response characteristic of the accelerometer was measured2 The accelerometer with a resonant frequency of 3549 Hz was demonstrated to show good linear frequency responding characteristics in the range of 100-3000 Hz. The accelerometer also shows good stability and consistency. Experimental results indicate that the outputs of the on- and cross-axis are 147 and 21.3 mV, respectively.展开更多
In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory lab...In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory labs and several exterritorial tests have put some upper limits on photon mass, e.g., torsion balance experiment in the lab shows that photon mass should be smaller than 1.2 x 10-51g. In this work, this claim is tested at a cosmological scale by looking at strong gravitational lensing data available and an upper limit of 8.71 x 10-39g on photon mass is given. Observations of energy-dependent gravitational lensing with not yet available higher accuracy astrometry instruments may constrain photon mass better.展开更多
A novel optical microfiber asymmetric Fabry-Perot interferometric (MAFPI) sensor is developed for simultaneous measurement of force and temperature. The MAFPI structure is formed by a weak fiber Bragg grating (FBG...A novel optical microfiber asymmetric Fabry-Perot interferometric (MAFPI) sensor is developed for simultaneous measurement of force and temperature. The MAFPI structure is formed by a weak fiber Bragg grating (FBG), a section of the microfiber, and a cleaved fiber end surface. The narrowband beam reflected from the low-reflectivity FBG and the broadband beam from the Fresnel reflection interfere lead to its unique sensing performance. The force sensing is performed by detecting the bending-loss induced fringe contrast changes, while the Bragg wavelength shift is employed for temperature measurement. Sensitivities of 9.8pm/℃ and 0.025dB/μN were obtained experimentally for temperature and force measurements, respectively.展开更多
文摘This paper discussed the main parameters contributing to the measurement uncertainty of interferometric distance meter (IDM). A simple and robust set-up is used to measure distance of about 12 cm with an expanded uncertainty ( k = 2) of ±16.4 μm. The measurement uncertainty is found to be limited by the wavelength measurement accuracy. This set-up can be used to measure distances up to 56 m. It also enables easy determination of the point of equal path difference between the measuring and the reference arms. LabVIEW program is used for counting of the fringes and applying fast Fourier transfor- mation (FFT) to perform frequency selective filtration to the noise. Although the reported uncertainty does not represent the state-of-art uncertainty reached for similar distance, the measurement provides traceable measurement to the unit of length, the meter.
文摘The authenticity of 91 wines produced in Cyprus from both indigenous and other vine varieties were investigated by a holistic approach, using, advanced technology such as SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and 1R-MS (isotope ratio-mass spectrometry) for the determination of the stable isotopes and ICP (inductively coupled plasma spectroscopy) for some heavy metals. The spectroscopic characteristics were evaluated statistically using different chemometric methods. The dependency of the D/H (deuterium/hydrogen) ratio of the methylene site in the ethanol molecule (D/H)ll and also theδ ^18O values of the wine water, were the most useful discriminators. Isotopic results allow us to have a complete idea about the regional variability of the isotopes. Among the metals, Ni followed by Pb was the ones with the highest discrimination value. The determined concentrations of Pb, Ni, Cr and Cd that are related to the safety of wines were within the acceptable limits that have been established by the OIV (international organization of vine and wine) or comparable with the results of the wines of other European countries. The study of the correlation between the load of heavy metals and isotopes in wines showed a dependence on the grape variety but not the geographical location of the vineyard. This is probably due to the close proximity of wine regions in Cyprus.
基金supported by the National Natural Sciences Foundation of China(Grant No.41871016)the National Key Research and Development Program of China(Grant No.2017YFC0504801)+1 种基金Opening Fund of Key Laboratory of Desert and Desertification,Chinese Academy of Sciences(Grant No.KLDD-2017-007)Technology research and development program of China Railway Urumqi Group Co.,Ltd.(2017J002,2017J003)
文摘The survival of Dunhuang Oasis is largely determined by the evolution of sand dunes in the southern edge of the oasis, mainly composed of shield dunes and mega pyramid dunes, which occupy twothirds and one-third of the area, respectively. However, few studies have focused on dynamics of these dunes, especially in terms of quantification. So the theoretical basis of sand-control engineering is relatively limited. Here we present the characteristics of dune dynamics of a shield dune and mega pyramid dune in the southern edge of Dunhuang Oasis during April 2014-April 2016 based on measurement data of a 3-D laser scanner. Results indicate that the volume of the shield dune decreased during the monitoring period of two years, and the gravity centers of the monitored shield dune moved windward, indicating that sand was transported toward the oasis. Conversely, the dune volume of the mega pyramid dune increased and the gravity center presented no prominent movement, indicating that the megapyramid dune was relatively stable and its migration toward the oasis was not notable. Thus, compared with mega pyramid dunes, shield dunes in the southern edge of Dunhuang Oasis are identified as a more significant sand source endangering the protection of the oasis, and sand-control engineering should mainly focus on these shield dunes.
基金supported by the National Natural Science Foundation of China (No. 40774067)the Applied Basic Research Program of Sichuan Province, China (No. 07JY029-135)
文摘An investigation of the properties ofa LiNbO3 photoelastic waveguide via the acceleration-induced effect is presented. A novel three-component hybrid-integrated optical accelerometer based on a Mach-Zehnder interferometer with a LiNbO3 photoelastic waveguide has been designed, which is capable of detecting seismic acceleration in high-accuracy seismic exploration. The Mach-Zehnder interferometer was successfully fabricated and a lighting test used to check its quality. The frequency response characteristic of the accelerometer was measured2 The accelerometer with a resonant frequency of 3549 Hz was demonstrated to show good linear frequency responding characteristics in the range of 100-3000 Hz. The accelerometer also shows good stability and consistency. Experimental results indicate that the outputs of the on- and cross-axis are 147 and 21.3 mV, respectively.
文摘In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory labs and several exterritorial tests have put some upper limits on photon mass, e.g., torsion balance experiment in the lab shows that photon mass should be smaller than 1.2 x 10-51g. In this work, this claim is tested at a cosmological scale by looking at strong gravitational lensing data available and an upper limit of 8.71 x 10-39g on photon mass is given. Observations of energy-dependent gravitational lensing with not yet available higher accuracy astrometry instruments may constrain photon mass better.
基金This work is supported by the National Natural Science Foundation of China (61107073, 61107072 and 61290312), Fundamental Research Funds for the Central Universities (ZYGX2011J002), Research Fund for the Doctoral Program of Higher Education of China (20110185120020), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1218), and the 111 Project (B 14039). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘A novel optical microfiber asymmetric Fabry-Perot interferometric (MAFPI) sensor is developed for simultaneous measurement of force and temperature. The MAFPI structure is formed by a weak fiber Bragg grating (FBG), a section of the microfiber, and a cleaved fiber end surface. The narrowband beam reflected from the low-reflectivity FBG and the broadband beam from the Fresnel reflection interfere lead to its unique sensing performance. The force sensing is performed by detecting the bending-loss induced fringe contrast changes, while the Bragg wavelength shift is employed for temperature measurement. Sensitivities of 9.8pm/℃ and 0.025dB/μN were obtained experimentally for temperature and force measurements, respectively.