期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于局部放电光度分布特征的开关柜采光单元优化布置方法 被引量:6
1
作者 缪金 陈平 +1 位作者 冷兆云 任明 《电工电能新技术》 CSCD 北大核心 2023年第4期77-86,共10页
局部放电光测法具有灵敏度高、抗干扰性强的特点,但其检测效果受传感器部署位置影响较大,因此从光信号辐射特性和传输特性本身出发,对传感器在设备中部署位置进行优化设计。本文提出了一种基于局部放电光度分布特征的开关柜采光单元优... 局部放电光测法具有灵敏度高、抗干扰性强的特点,但其检测效果受传感器部署位置影响较大,因此从光信号辐射特性和传输特性本身出发,对传感器在设备中部署位置进行优化设计。本文提出了一种基于局部放电光度分布特征的开关柜采光单元优化布置方案。首先设计了基于硅光电倍增管(SiPM)传感器的放电弱光探测装置,并利用积分球确定了装置光学检出性能与视在放电量的对应关系,结果表明对于视在放电量154.9 pC的放电,传感装置测量到其0.0225%以上的光能后即可实现放电检出;之后建立开关柜电缆室光学仿真模型,在典型故障位置设置了放电光源,根据光学仿真结果,选择针对不同放电光源均能获得较高响应强度的位置布置传感器,为了证明该布置方案的有效性,进行了开关柜放电光学检测实验,结果表明:传感器在所选安装位置上可实现放电的有效检出。 展开更多
关键词 开关柜 放电弱光检测 光度分布特征 部署策略优化
下载PDF
A calculation method for low dynamic vehicle velocity based on fusion of optical flow and feature point matching
2
作者 Liu Di Chen Xiyuan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期426-431,共6页
Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the... Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the fusion of optical flow tracking and scale mvaiant feature transform(SIFT)is proposed.The algorithm introduces anonlinear fuzzy membership function and the filter residual for the noise covariance matrix in the adaptive adjustment process.In the process of calculating the velocity of the vehicle,the tracking and matching of the inter-frame displacement a d the vehicle velocity calculation a e carried out by using the optical fow tracing and the SIF'T methods,respectively.Meanwhile,the velocity difference between theoutputs of thesetwo methods is used as the observation of the improved adaptive Kalman filter.Finally,the velocity calculated by the optical fow method is corrected by using the velocity error estimate of the output of the modified adaptive Kalman filter.The results of semi-physical experiments show that the maximum velocityeror of the fusion algorithm is decreased by29%than that of the optical fow method,and the computation time is reduced by80%compared with the SIFT method. 展开更多
关键词 VELOCITY optical fow feature point matching non-uniform light intensity distribution
下载PDF
Classification of hyperspectral remote sensing images using frequency spectrum similarity 被引量:10
3
作者 WANG Ke GU XingFa +3 位作者 YU Tao MENG QingYan ZHAO LiMin FENG Li 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第4期980-988,共9页
An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discre... An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively. 展开更多
关键词 hyperspectral image spectral similarity frequency spectrum feature remote sensing CLASSIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部