Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is int...Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.展开更多
A sapphire fiber thermal probe with Cr^3+ ion-doped end was grown using the laser heated pedestal method. The fluorescence thermal probe offers advantages of compact structure, high performance and the ability to sus...A sapphire fiber thermal probe with Cr^3+ ion-doped end was grown using the laser heated pedestal method. The fluorescence thermal probe offers advantages of compact structure, high performance and the ability to sustain high temperature from the room temperature to 450℃. Based on the fast fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of the phase angle of the first non-zeroth item of FFT result. Compared with other traditional fitting methods, our method has advantages such as fast speed, high accuracy and being free from the influence of the base signal. The standard deviation of FFT method is about half of that method. In addition, since the FFT method is immunity to analysis can be skipped. of the Prony method and close to the one of the Marquardt the background noise of the signal, the background noise展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur f...When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.展开更多
Jet spreading width is one of the important characteristics of water jets discharging into the air.Many researchers have dealt with measuring this width,and contact measuring methods on the water jet surface were empl...Jet spreading width is one of the important characteristics of water jets discharging into the air.Many researchers have dealt with measuring this width,and contact measuring methods on the water jet surface were employed in a lot of the cases.In order to avoid undesirable effects caused by the contact on the jet surface,we introduce non-contact measuring methods with a laser instrument to the measurements of jet spreading width.In measurements,a transmitter emits sheet-like laser beam to a receiver.The water jet between the transmitter and the receiver interrupts the laser beam and makes a shadow.The minimum and maximum values of the shadow width are measured.In addition,pictures of the water jet are taken with a scale,and the shadow width is measured from the pictures.The experiments on various needle strokes were performed.Three kinds of width consistent with the jet structure were obtained.In the results,it can be concluded that our non-contact measuring methods are feasible.The data of jet spreading widths and jet taper were obtained and are useful for future applications.展开更多
文摘Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.
基金the Natural Science Research Foundation of Education Bureau of Hebei Province, China (Grant No.2001265)
文摘A sapphire fiber thermal probe with Cr^3+ ion-doped end was grown using the laser heated pedestal method. The fluorescence thermal probe offers advantages of compact structure, high performance and the ability to sustain high temperature from the room temperature to 450℃. Based on the fast fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of the phase angle of the first non-zeroth item of FFT result. Compared with other traditional fitting methods, our method has advantages such as fast speed, high accuracy and being free from the influence of the base signal. The standard deviation of FFT method is about half of that method. In addition, since the FFT method is immunity to analysis can be skipped. of the Prony method and close to the one of the Marquardt the background noise of the signal, the background noise
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
文摘When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.
文摘Jet spreading width is one of the important characteristics of water jets discharging into the air.Many researchers have dealt with measuring this width,and contact measuring methods on the water jet surface were employed in a lot of the cases.In order to avoid undesirable effects caused by the contact on the jet surface,we introduce non-contact measuring methods with a laser instrument to the measurements of jet spreading width.In measurements,a transmitter emits sheet-like laser beam to a receiver.The water jet between the transmitter and the receiver interrupts the laser beam and makes a shadow.The minimum and maximum values of the shadow width are measured.In addition,pictures of the water jet are taken with a scale,and the shadow width is measured from the pictures.The experiments on various needle strokes were performed.Three kinds of width consistent with the jet structure were obtained.In the results,it can be concluded that our non-contact measuring methods are feasible.The data of jet spreading widths and jet taper were obtained and are useful for future applications.