This paper presents a high intensity discharge(HID) lamp for automotive illumination. A novel type of ballast for HID is proposed without an acoustic resonance. The system consists of high frequency DC/DC converter,...This paper presents a high intensity discharge(HID) lamp for automotive illumination. A novel type of ballast for HID is proposed without an acoustic resonance. The system consists of high frequency DC/DC converter,DC/AC inverter(SLA2403M), high voltage igniter and a microcontroller unit(MCU). The proposed ballast controls the complex start-up process and constant power process by programming on the rnicrocontroller. It is verified that experimental results agree well with the calculated ones. The ballast features such functions as failure protection, line under-voltage, line over-voltage, output short circuit and disconnection protections.展开更多
In this paper, a non-smooth population model with impulsive effects is proposed by combining discontinuity and non-smoothness. According to the qualitative theory of differential equations, the global analysis of the ...In this paper, a non-smooth population model with impulsive effects is proposed by combining discontinuity and non-smoothness. According to the qualitative theory of differential equations, the global analysis of the model is discussed. Using the theory of impulsive differential equations, the existence conditions of order one periodic solution are obtained. And the impulsive controllers are designed to make the pest populations stay at the refuge level. Some simulations are carried out to prove the results.展开更多
High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its ...High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its practical applications are still hindered by the applicability and material limitation of lithography-based micro/nano fabrication approaches.Herein,we demonstrate a fluid-guided printing process for preparing HRI selenium microarrays.The microstructured flexible template is replicated from the diced silicon wafer without any lithography-based methods.When heated above the glass transition temperature,the flow characteristics of selenium endows the structure downsizing and orientation patterning between the target substrate and the template.Near 10 times narrowing selenium microarrays(1.9μm width)are patterned from the non-lithography template(18μm width).HRI selenium microarrays offer high refractive efficiencies and strong optical confinement abilities,which achieve angledependent structurally coloration and polarization.Meanwhile,the color difference can be recognized under the one degree distinction of the angle between incident and refracted light.This printing platform will facilitate HRI optical metasurfaces in a variety of applications,ranging from photonic sensor,polarization modulation to light manipulation.展开更多
A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave...A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.展开更多
文摘This paper presents a high intensity discharge(HID) lamp for automotive illumination. A novel type of ballast for HID is proposed without an acoustic resonance. The system consists of high frequency DC/DC converter,DC/AC inverter(SLA2403M), high voltage igniter and a microcontroller unit(MCU). The proposed ballast controls the complex start-up process and constant power process by programming on the rnicrocontroller. It is verified that experimental results agree well with the calculated ones. The ballast features such functions as failure protection, line under-voltage, line over-voltage, output short circuit and disconnection protections.
文摘In this paper, a non-smooth population model with impulsive effects is proposed by combining discontinuity and non-smoothness. According to the qualitative theory of differential equations, the global analysis of the model is discussed. Using the theory of impulsive differential equations, the existence conditions of order one periodic solution are obtained. And the impulsive controllers are designed to make the pest populations stay at the refuge level. Some simulations are carried out to prove the results.
基金the National Key R&D Program of China(2018YFA0208501)the National Natural Science Foundation of China(51803217,51773206,91963212,and 51961145102(BRICS Project))+3 种基金the Youth Innovation Promotion Association CAS(2020032)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005)Russian Foundation for Basic Research(19-52-80036(BRICS Project))K.C.Wong Education Foundation。
文摘High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its practical applications are still hindered by the applicability and material limitation of lithography-based micro/nano fabrication approaches.Herein,we demonstrate a fluid-guided printing process for preparing HRI selenium microarrays.The microstructured flexible template is replicated from the diced silicon wafer without any lithography-based methods.When heated above the glass transition temperature,the flow characteristics of selenium endows the structure downsizing and orientation patterning between the target substrate and the template.Near 10 times narrowing selenium microarrays(1.9μm width)are patterned from the non-lithography template(18μm width).HRI selenium microarrays offer high refractive efficiencies and strong optical confinement abilities,which achieve angledependent structurally coloration and polarization.Meanwhile,the color difference can be recognized under the one degree distinction of the angle between incident and refracted light.This printing platform will facilitate HRI optical metasurfaces in a variety of applications,ranging from photonic sensor,polarization modulation to light manipulation.
基金supported by the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin in China(No.14JCYBJC16500)
文摘A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.