The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed...The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.展开更多
In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaA...In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaAs heterojunction device exhibited obvious photovoltaic behavior to 808 nm illumination,indicating that the near-infrared photodetector can be used as a self-driven device without external power supply.Further device analysis showed that the hybrid heterojunction exhibited a high on/off ratio of 1.16×10^5 measured at 808 nm under zero bias voltage.The responsivity and specific detectivity of photodetector were estimated to be 171.34 mA/W and 2.36×10^11 Jones,respectively.Moreover,the device showed excellent stability and reliable repeatability.After 2 months,the photoelectric characteristics of the near-infrared photodetector hardly degrade in air,attributable to the good stability of the PdSe2.Finally,the PdSe2/GaAs-based heterojunction device can also function as a near-infrared light sensor.展开更多
The relation between the power of the Brillouin signal and the strain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Bfillouin gain can be changed by the tempera...The relation between the power of the Brillouin signal and the strain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Bfillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of the parameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.展开更多
A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. I...A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.展开更多
For non-destructive optical characterization, laser beam induced current(LBIC) microscopy has been developed into as a quantitative tool to examine individual photodiodes within a large pixel array. Two-dimensional LB...For non-destructive optical characterization, laser beam induced current(LBIC) microscopy has been developed into as a quantitative tool to examine individual photodiodes within a large pixel array. Two-dimensional LBIC microscopy, also generally called photocurrent mapping(PC mapping), can provide spatially resolved information about local electrical properties and p-n junction formation in photovoltaic infrared(including visible light) photodetectors from which it is possible to extract material and device parameters such as junction area, junction depth, diffusion length, leakage current position and minority carrier diffusion length etc. This paper presents a comprehensive review of research background, operating principle, fundamental issues, and applications of LBIC or PC mapping.展开更多
This paper describes the application of fiber Bragg grating (FBG) based sensors for monitoring road pavement strains caused by mining induced ground subsidence as a result of underground longwall coal mining beneath...This paper describes the application of fiber Bragg grating (FBG) based sensors for monitoring road pavement strains caused by mining induced ground subsidence as a result of underground longwall coal mining beneath a major highway in New South Wales, Australia. After a lengthy planning period, the risks to the highway pavement were successfully managed by the highway authority and the mining company through a technical committee. The technical committee comprised representatives of the mining company, the highway authority and specialists in the fields of pavement engineering, geotechnical engineering and subsidence. An important component of the management strategy is the installation of a total of 840 strain and temperature sensors in the highway pavement using FBG arrays encapsulated in glass-fiber composite cables. The sensors and associated demodulation equipment provide continuous strain measurements along the pavement, enabling on-going monitoring of the effects of mining subsidence on the pavement and timely implementation of planned mitigation and response measures to ensure the safety and serviceability of the highway throughout the mining period.展开更多
In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to ide...In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.展开更多
This paper reports on an experimental program of work which investigates the reliability, durability, and packaging of fiber Bragg gratings (FBGs) for application as distributed strain sensors during structural fati...This paper reports on an experimental program of work which investigates the reliability, durability, and packaging of fiber Bragg gratings (FBGs) for application as distributed strain sensors during structural fatigue testing of military platforms. The influence of the FBG fabrication process on sensor reliability is investigated. In addition, methodologies for broad-area packaging and surface-mounting of FBG sensing arrays to defense platforms are developed and tested.展开更多
文摘The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.
基金supported by the National Natural Science Foundation of China(No.61575059,No.61675062,No.21501038)the Fundamental Research Funds for the Central Universities(No.JZ2018HGPB0275,No.JZ2018HGTA0220,and No.JZ2018HGXC0001).
文摘In this study,we have developed a high-sensitivity,near-infrared photodetector based on PdSe2/GaAs heterojunction,which was made by transferring a multilayered PdSe2 film onto a planar GaAs.The as-fabricated PdSe2/GaAs heterojunction device exhibited obvious photovoltaic behavior to 808 nm illumination,indicating that the near-infrared photodetector can be used as a self-driven device without external power supply.Further device analysis showed that the hybrid heterojunction exhibited a high on/off ratio of 1.16×10^5 measured at 808 nm under zero bias voltage.The responsivity and specific detectivity of photodetector were estimated to be 171.34 mA/W and 2.36×10^11 Jones,respectively.Moreover,the device showed excellent stability and reliable repeatability.After 2 months,the photoelectric characteristics of the near-infrared photodetector hardly degrade in air,attributable to the good stability of the PdSe2.Finally,the PdSe2/GaAs-based heterojunction device can also function as a near-infrared light sensor.
基金Talent Supporting Project of Educa-tion Ministry of China (Grant No. NCET-05-0897)Scientific Research Project for Universities in Xinjiang (Grant No. XJEDU2004 E02 and XJEDU2006110)
文摘The relation between the power of the Brillouin signal and the strain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Bfillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of the parameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.
文摘A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.
基金supported by the State Key Program for Basic Research of China(Grant No.2014CB921600)the National Natural Science Foundation of China(Grant Nos.11322441 and 11274331)the Fund of Shanghai Science and Technology Foundation(Grant No.14JC1406400)
文摘For non-destructive optical characterization, laser beam induced current(LBIC) microscopy has been developed into as a quantitative tool to examine individual photodiodes within a large pixel array. Two-dimensional LBIC microscopy, also generally called photocurrent mapping(PC mapping), can provide spatially resolved information about local electrical properties and p-n junction formation in photovoltaic infrared(including visible light) photodetectors from which it is possible to extract material and device parameters such as junction area, junction depth, diffusion length, leakage current position and minority carrier diffusion length etc. This paper presents a comprehensive review of research background, operating principle, fundamental issues, and applications of LBIC or PC mapping.
文摘This paper describes the application of fiber Bragg grating (FBG) based sensors for monitoring road pavement strains caused by mining induced ground subsidence as a result of underground longwall coal mining beneath a major highway in New South Wales, Australia. After a lengthy planning period, the risks to the highway pavement were successfully managed by the highway authority and the mining company through a technical committee. The technical committee comprised representatives of the mining company, the highway authority and specialists in the fields of pavement engineering, geotechnical engineering and subsidence. An important component of the management strategy is the installation of a total of 840 strain and temperature sensors in the highway pavement using FBG arrays encapsulated in glass-fiber composite cables. The sensors and associated demodulation equipment provide continuous strain measurements along the pavement, enabling on-going monitoring of the effects of mining subsidence on the pavement and timely implementation of planned mitigation and response measures to ensure the safety and serviceability of the highway throughout the mining period.
文摘In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.
文摘This paper reports on an experimental program of work which investigates the reliability, durability, and packaging of fiber Bragg gratings (FBGs) for application as distributed strain sensors during structural fatigue testing of military platforms. The influence of the FBG fabrication process on sensor reliability is investigated. In addition, methodologies for broad-area packaging and surface-mounting of FBG sensing arrays to defense platforms are developed and tested.