Two-dimensional(2D)transition metal dichalcogenides(TMDs)and their heterostructures(HSs)exhibit unique optical properties and show great promise for developing next-generation optoelectronics.However,the photo-lumines...Two-dimensional(2D)transition metal dichalcogenides(TMDs)and their heterostructures(HSs)exhibit unique optical properties and show great promise for developing next-generation optoelectronics.However,the photo-luminescence(PL)quantum yield of monolayer(1L)TMDs is still quite low at room temperature,which severely lim-its their practical applications.Here we report a PL enhancement effect of 1L WS_(2) at room temperature when con-structing it into 1L-WS_(2)/hBN/1L-MoS_(2) vertical HSs.The PL enhancement factors(EFs)can be up to 4.2.By using transient absorption(TA)spectroscopy,we demonstrate that the PL enhancement effect is due to energy transfer from 1L MoS_(2) to 1L WS_(2).The energy transfer process occurs on a picosecond timescale and lasts more than one hundred picoseconds which indicates a prominent contribution from exciton-exciton annihilation.Furthermore,the PL en-hancement effect of 1L WS_(2) can be observed in 2L-MoS_(2)/hBN/1L-WS_(2) and 3L-MoS_(2)/hBN/1L-WS_(2) HSs.Our study provides a comprehensive understanding of the energy transfer process in the PL enhancement of 2D TMDs and a fea-sible way to optimize the performance of TMD-based optoelectronic devices.展开更多
The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-F...The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.展开更多
Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure.Their characteristics are analyzed.The light emitters have high spectral purity...Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure.Their characteristics are analyzed.The light emitters have high spectral purity of 4 8nm and high electroluminescence intensity of 0 7mW while injection current is 50mA.A 1×16 array of surface emitting light device is tested on line by probes and then used for module.The light detectors have wavelength selectivity and space selectivity.The required difference in input mirror reflectivity between emitters and detectors can easily be achieved though varying the numbers of top DBR period by etching.展开更多
The influence of DBR in resonant cavity on the characteristics of the reflectivity of InGaAs/GaAs MQW SEED arrays has been discussed. InGaAs/GaAs acting as the active region of MQW SEED to gain 980nm work wavele...The influence of DBR in resonant cavity on the characteristics of the reflectivity of InGaAs/GaAs MQW SEED arrays has been discussed. InGaAs/GaAs acting as the active region of MQW SEED to gain 980nm work wavelergth has been introduced. A new resonant cavity structure of the InGaAs/GaAs MQW SEED arrays has been designed and analyzed. The MQW materials grown by MOCVD system have also been measured and analyzed with micro optical spot reflection spectra, PL measurement and X ray measurement. The results of measurement prove the good quality of the wafer and the accuracy of our design and analysis of the structure of the device.展开更多
We theoretically investigate the evolutions of two-dimensional, third-order, nonlinear photon echo rephasing spectra with population time by using an exact numerical path integral method. It is shown that for the same...We theoretically investigate the evolutions of two-dimensional, third-order, nonlinear photon echo rephasing spectra with population time by using an exact numerical path integral method. It is shown that for the same system, the coherence time and relaxation time of excitonic states are short, however, if the couplings of electronic and intra-pigment vibrational modes are considered, the coherence time and relaxation time of this vibronic states are greatly extended. It means that the couplings between electronic and vibrational modes play important roles in keeping long-lived coherence in light-harvesting complexes. Particularly, by using the method we can fix the transition path of the energy transfer in bio-molecular systems.展开更多
The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.55μm windows polarization-independent semiconductor optical amplifier is reported.The valence-band structure of the MQW is calculated by usin...The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.55μm windows polarization-independent semiconductor optical amplifier is reported.The valence-band structure of the MQW is calculated by using k·p method,in which 6×6 Luttinger effective-mass Hamiltonian is taken into account.The polarization dependent optical gain is calculated with various well width,strain,and carrier density.展开更多
The infrared absorption and Raman scattering spectra were measured for the metallotriph- enylcorroles (MTPCs, M=Cu, Co, Ni, Mn). The ground-state structures and vibrational spectra of MTPCs have been calculated with...The infrared absorption and Raman scattering spectra were measured for the metallotriph- enylcorroles (MTPCs, M=Cu, Co, Ni, Mn). The ground-state structures and vibrational spectra of MTPCs have been calculated with the density functional theory. The observed Raman and IR bands have been assigned based on the calculation results. Due to the symmetry lowering, the vibrational spectra of MTPCs are much more complex than metal- loporphyrins, and several skeletal modes are found strongly coupled to the phenyl vibrations. The relationship between the Raman/IR frequencies and the structures of TPC ring is in-vestigated. It is found that the vibrations involving the Cα^I Cα^I stretch and CαCm stretchare sensitive to the size of corrole core. In particular, the frequency of v5, which is assigned to Cα^I Cα^I stretch in coupling with the CαCm symmetric stretch, increases linearly with the decrease of the corrole core-sizes and may be used as a mark band to evaluate the structural change of the metallocorroles.展开更多
The infrared absorption and 514.5 nm excited Raman spectra were measured for the metallo- tetra-(tert-butyl)-tetraazaporphyrin (MT(tBu)TAP, M--Cu, Co, Ni, Zn). The ground-state structures and vibrational spectra...The infrared absorption and 514.5 nm excited Raman spectra were measured for the metallo- tetra-(tert-butyl)-tetraazaporphyrin (MT(tBu)TAP, M--Cu, Co, Ni, Zn). The ground-state structures and vibrational spectra of MT(tBu)TAPs have been calculated at the B3LYP level of theory. The observed Raman and IR bands have been assigned based on the calculation results and by comparing with the normal metalloporphyrins. The relationship between the Raman/IR frequencies and the structures of TAP ring was investigated. The results show that the frequencies of CβCβ′ stretch (Ag), asymmetric CaNto stretch (Ag), and symmetric CaNto stretch (Bg) modes increase linearly with the decrease of the core-sizes of TAP ring. Among the three modes, the later two are more sensitive to the core-size change.展开更多
Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the ox...Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.展开更多
The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ...The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ground electronic state are taken to be the initial and target states, respectively, for the two molecular systems. The influences of the field peak amplitude and pulse duration on the population transfer process are discussed in detail. The pulse duration is required to be longer than 860 fs for the DF molecule to achieve a relatively high transfer probability (more than 80%), while the one for the HF molecule is just required to be longer than 460 fs. Moreover, the intermediate level v=1 and the higher level v=3 may play more important roles in the two-photon resonance process for the DF molecule, compared to the roles in the process for the HF molecule.展开更多
Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wur...Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic .potential expanding. The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen. Numerical calculations on an asymmetric AlN/GaN/AIo,15 Gao.85N Wurtzite Q W are performed. A detailed comparison with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.展开更多
Abstract The B-spline expansion technique and time-dependent two-level approach are applied to study the interaction between the microwave field and potassium atoms in a static electric field. We obtain theoretical mu...Abstract The B-spline expansion technique and time-dependent two-level approach are applied to study the interaction between the microwave field and potassium atoms in a static electric field. We obtain theoretical multiphoton resonance spectra that can be compared with the experimental data. We also obtain the time evolution of the final state in different microwave fields.展开更多
A graphically oriented interactive program for assignments of rotationally resolved molecular spectra has been devised. The program functions by grouping spectral lines in term of the second difference principle. and ...A graphically oriented interactive program for assignments of rotationally resolved molecular spectra has been devised. The program functions by grouping spectral lines in term of the second difference principle. and graphing spectral intensity versus frequency in a bar graph of the selected groups, distinguished by color and/or line-type. This allows for easy detection of regular patterns buried in the observed spectrum. Furthermore, it includes a Loomis-Wood view for assisting in spectral assignments. As an example, the program was applied in assigning the molecular spectrum of the production in the discharge of PCl3 buffered by helium gas, which may belong to several species. The results suggest that the program is highly efficient and quite useful in the assignment and the analysis of molecular spectra, especially those of symmetric top, slightly asymmetric top and linear molecules. The accuracy and efficiency of this program will likely ensure its wide application in the processing of molecular spectra.展开更多
We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be...We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.展开更多
An operando dual‐beam Fourier transform infrared (DB‐FTIR) spectrometer was successfully developed using a facile method. The DB‐FTIR spectrometer is suitable for the real‐time study of the dynamic surface process...An operando dual‐beam Fourier transform infrared (DB‐FTIR) spectrometer was successfully developed using a facile method. The DB‐FTIR spectrometer is suitable for the real‐time study of the dynamic surface processes involved in gas/solid heterogeneous catalysis under real reaction conditionsbecause it can simultaneously collect reference and sample spectra. The influence of gas‐phasemolecular vibration and heat irradiation at real reaction temperatures can therefore be eliminated.The DB‐FTIR spectrometer was successfully used to follow the transformation of isobutene over nano‐sized HZSM‐5 zeolite under real reaction conditions.展开更多
Resonance-enhanced multiphoton ionization of the titanium atoms has been investigated in the 293 321 nm wavelength. We couple a laser-ablated metal target into a molecular beam to produce free atoms. Ions produced fro...Resonance-enhanced multiphoton ionization of the titanium atoms has been investigated in the 293 321 nm wavelength. We couple a laser-ablated metal target into a molecular beam to produce free atoms. Ions produced from photoionization of the neutral atoms are monitored by a home-built time-of-flight mass spectrometer. Photoionization cross sections of the excited states of Ti I were deduced from the dependence of the ion signal intensity on the laser intensity for photon energies close to the ionization threshold. The values obtained range from 0.2 Mb to 6.0 Mb. No significant isotope-dependence was found from measurements of the photoionization cross sections of ^46Ti, ^47Ti, and ^48Ti.展开更多
A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear reg...A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.展开更多
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)and their heterostructures(HSs)exhibit unique optical properties and show great promise for developing next-generation optoelectronics.However,the photo-luminescence(PL)quantum yield of monolayer(1L)TMDs is still quite low at room temperature,which severely lim-its their practical applications.Here we report a PL enhancement effect of 1L WS_(2) at room temperature when con-structing it into 1L-WS_(2)/hBN/1L-MoS_(2) vertical HSs.The PL enhancement factors(EFs)can be up to 4.2.By using transient absorption(TA)spectroscopy,we demonstrate that the PL enhancement effect is due to energy transfer from 1L MoS_(2) to 1L WS_(2).The energy transfer process occurs on a picosecond timescale and lasts more than one hundred picoseconds which indicates a prominent contribution from exciton-exciton annihilation.Furthermore,the PL en-hancement effect of 1L WS_(2) can be observed in 2L-MoS_(2)/hBN/1L-WS_(2) and 3L-MoS_(2)/hBN/1L-WS_(2) HSs.Our study provides a comprehensive understanding of the energy transfer process in the PL enhancement of 2D TMDs and a fea-sible way to optimize the performance of TMD-based optoelectronic devices.
文摘The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.
文摘Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure.Their characteristics are analyzed.The light emitters have high spectral purity of 4 8nm and high electroluminescence intensity of 0 7mW while injection current is 50mA.A 1×16 array of surface emitting light device is tested on line by probes and then used for module.The light detectors have wavelength selectivity and space selectivity.The required difference in input mirror reflectivity between emitters and detectors can easily be achieved though varying the numbers of top DBR period by etching.
文摘The influence of DBR in resonant cavity on the characteristics of the reflectivity of InGaAs/GaAs MQW SEED arrays has been discussed. InGaAs/GaAs acting as the active region of MQW SEED to gain 980nm work wavelergth has been introduced. A new resonant cavity structure of the InGaAs/GaAs MQW SEED arrays has been designed and analyzed. The MQW materials grown by MOCVD system have also been measured and analyzed with micro optical spot reflection spectra, PL measurement and X ray measurement. The results of measurement prove the good quality of the wafer and the accuracy of our design and analysis of the structure of the device.
基金This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No.LY13A040006), and the K. C. Wong Magna Foundation in Ningbo University.
文摘We theoretically investigate the evolutions of two-dimensional, third-order, nonlinear photon echo rephasing spectra with population time by using an exact numerical path integral method. It is shown that for the same system, the coherence time and relaxation time of excitonic states are short, however, if the couplings of electronic and intra-pigment vibrational modes are considered, the coherence time and relaxation time of this vibronic states are greatly extended. It means that the couplings between electronic and vibrational modes play important roles in keeping long-lived coherence in light-harvesting complexes. Particularly, by using the method we can fix the transition path of the energy transfer in bio-molecular systems.
文摘The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.55μm windows polarization-independent semiconductor optical amplifier is reported.The valence-band structure of the MQW is calculated by using k·p method,in which 6×6 Luttinger effective-mass Hamiltonian is taken into account.The polarization dependent optical gain is calculated with various well width,strain,and carrier density.
文摘The infrared absorption and Raman scattering spectra were measured for the metallotriph- enylcorroles (MTPCs, M=Cu, Co, Ni, Mn). The ground-state structures and vibrational spectra of MTPCs have been calculated with the density functional theory. The observed Raman and IR bands have been assigned based on the calculation results. Due to the symmetry lowering, the vibrational spectra of MTPCs are much more complex than metal- loporphyrins, and several skeletal modes are found strongly coupled to the phenyl vibrations. The relationship between the Raman/IR frequencies and the structures of TPC ring is in-vestigated. It is found that the vibrations involving the Cα^I Cα^I stretch and CαCm stretchare sensitive to the size of corrole core. In particular, the frequency of v5, which is assigned to Cα^I Cα^I stretch in coupling with the CαCm symmetric stretch, increases linearly with the decrease of the corrole core-sizes and may be used as a mark band to evaluate the structural change of the metallocorroles.
文摘The infrared absorption and 514.5 nm excited Raman spectra were measured for the metallo- tetra-(tert-butyl)-tetraazaporphyrin (MT(tBu)TAP, M--Cu, Co, Ni, Zn). The ground-state structures and vibrational spectra of MT(tBu)TAPs have been calculated at the B3LYP level of theory. The observed Raman and IR bands have been assigned based on the calculation results and by comparing with the normal metalloporphyrins. The relationship between the Raman/IR frequencies and the structures of TAP ring was investigated. The results show that the frequencies of CβCβ′ stretch (Ag), asymmetric CaNto stretch (Ag), and symmetric CaNto stretch (Bg) modes increase linearly with the decrease of the core-sizes of TAP ring. Among the three modes, the later two are more sensitive to the core-size change.
基金supported by the National Program on Key Basic Research Project (2016YFA0203000)the Early Career Scheme (ECS 809813) from the Research Grant Council, Hong Kong SAR Government+2 种基金the Croucher Foundation Visitorship for PRC Scholars 2015/16 at The Education University of Hong Kongthe National Natural Science Foundation of China (51672312, 21373275)the Program for New Century Excellent Talents in University (NCET-12-0668)~~
文摘Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.
文摘The isotope effects of XF (X=H, D) on the population transfer process via two-photon resonance excitation are investigated by solving the time-dependent SchrSdinger equation. The vibrational levels v=0 and 2 of the ground electronic state are taken to be the initial and target states, respectively, for the two molecular systems. The influences of the field peak amplitude and pulse duration on the population transfer process are discussed in detail. The pulse duration is required to be longer than 860 fs for the DF molecule to achieve a relatively high transfer probability (more than 80%), while the one for the HF molecule is just required to be longer than 460 fs. Moreover, the intermediate level v=1 and the higher level v=3 may play more important roles in the two-photon resonance process for the DF molecule, compared to the roles in the process for the HF molecule.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60276004 and 6939007,3, the Scientilic Research Foundation for the Returned 0overseas Chinese Scholars State Education Ministry of China
文摘Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic .potential expanding. The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen. Numerical calculations on an asymmetric AlN/GaN/AIo,15 Gao.85N Wurtzite Q W are performed. A detailed comparison with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.
基金the National Natural Science Foundation of China under,教育部科学技术研究项目
文摘Abstract The B-spline expansion technique and time-dependent two-level approach are applied to study the interaction between the microwave field and potassium atoms in a static electric field. We obtain theoretical multiphoton resonance spectra that can be compared with the experimental data. We also obtain the time evolution of the final state in different microwave fields.
基金This work was supported by the National Natural Science Foundation of China (NSFC No.10574045 and No.10434060)and Science and Technology Commission of Shanghai Municipality(No.04DZ14009).The authors are grateful to Hua-huiZhu for his valuable suggestions.
文摘A graphically oriented interactive program for assignments of rotationally resolved molecular spectra has been devised. The program functions by grouping spectral lines in term of the second difference principle. and graphing spectral intensity versus frequency in a bar graph of the selected groups, distinguished by color and/or line-type. This allows for easy detection of regular patterns buried in the observed spectrum. Furthermore, it includes a Loomis-Wood view for assisting in spectral assignments. As an example, the program was applied in assigning the molecular spectrum of the production in the discharge of PCl3 buffered by helium gas, which may belong to several species. The results suggest that the program is highly efficient and quite useful in the assignment and the analysis of molecular spectra, especially those of symmetric top, slightly asymmetric top and linear molecules. The accuracy and efficiency of this program will likely ensure its wide application in the processing of molecular spectra.
基金Supported by the Natural Science Foundation of Jiangsu Provincial Universities under Grant No.10KJB180004the National Natural Science Foundation of China under Grant No.11105075
文摘We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.
基金supported by the National Natural Science Foundation of China (21603023)the PetroChina Innovation Foundation, China (2014D-5006-0501)~~
文摘An operando dual‐beam Fourier transform infrared (DB‐FTIR) spectrometer was successfully developed using a facile method. The DB‐FTIR spectrometer is suitable for the real‐time study of the dynamic surface processes involved in gas/solid heterogeneous catalysis under real reaction conditionsbecause it can simultaneously collect reference and sample spectra. The influence of gas‐phasemolecular vibration and heat irradiation at real reaction temperatures can therefore be eliminated.The DB‐FTIR spectrometer was successfully used to follow the transformation of isobutene over nano‐sized HZSM‐5 zeolite under real reaction conditions.
基金V. ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (No.10674002 and No.20973001) and the Science Foundation of Anhui Education Committee (No.ZD2007001-1).
文摘Resonance-enhanced multiphoton ionization of the titanium atoms has been investigated in the 293 321 nm wavelength. We couple a laser-ablated metal target into a molecular beam to produce free atoms. Ions produced from photoionization of the neutral atoms are monitored by a home-built time-of-flight mass spectrometer. Photoionization cross sections of the excited states of Ti I were deduced from the dependence of the ion signal intensity on the laser intensity for photon energies close to the ionization threshold. The values obtained range from 0.2 Mb to 6.0 Mb. No significant isotope-dependence was found from measurements of the photoionization cross sections of ^46Ti, ^47Ti, and ^48Ti.
基金Projects(20775010, 21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High-tech Research and Development Program of China+2 种基金Project(09JJ3016) supported by the Natural Science Foundation of Hunan Province, ChinaProject(09C066) supported by the Scientific Research Fund of Hunan Provincial Education Department, ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, China
文摘A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.