A new non-contact inspection technique based on laser-PSD (position sensitive detector) to inspect the inner surface of small-diameter pipe is proposed,and the corresponding sensor has been developed. After being re...A new non-contact inspection technique based on laser-PSD (position sensitive detector) to inspect the inner surface of small-diameter pipe is proposed,and the corresponding sensor has been developed. After being reflected by two mirrors in series,a laser beam is projected onto the inner wall of a pipe as a small light spot and is read by a two-dimensional PSD. Based on the signals from the PSD and the structure parameters of the sensor,the spot position on the wall can be calculated in a local 3D coordinate system. The spot controlled by the micro-motor driven mirrors will scan a closed section ring on the inner wall of the pipe to obtain the relative coordinates of all the sampled points. The data will be then processed through data segmentation and least square fitting,to reconstruct the section curve used for obtaining the radius and the defect description of the section. Driven by a micro-pipe robot,the sensor can inspect a long curved pipe and obtain its 3-D reconstruction. An inspection system based on this technique can detect the mini-diarneter pipe with an inner diameter of 9.5 mm-10.5 mm and a curvature radius larger than 100 mm at a measurement accuracy of the inner surface defect of ±0.1 mm.展开更多
The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intrigui...The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intriguing optical and electronic properties,making it an attractive photosensitive material for optoelectronic applications.However,the lack of an effective built-in electric field and photoconductive gain mechanism in 2D WS_(2)impedes its application in high-performance photodetectors.Herein,we propose a hybrid heterostructure photodetector that contains 1D Te and 2D WS_(2).In this device,1D Te induces in-plane strain in 2D WS_(2),which regulates the electronic structures of local WS_(2)and gives rise to type-Ⅱ band alignment in the horizontal direction.Moreover,the vertical heterojunction built of 2D WS_(2)and 1D Te introduces a high photoconductive gain.Benefiting from these two effects,the transfer of photogenerated carriers is optimized,and the proposed photodetector exhibits high sensitivity(photoresponsivity of ~27.7 A W^(-1),detectivity of 9.5×10^(12)Jones,and short rise/decay time of 19.3/17.6 ms).In addition,anisotropic photodetection characteristics with a dichroic ratio up to 2.1 are achieved.This hybrid 1D/2D heterostructure overcomes the inherent limitations of each material and realizes novel properties,opening up a new avenue towards constructing multifunctional optoelectronic devices.展开更多
Terahertz time-domain spectroscopy (THz-TDS) has been used to probe the evolutionary paths of kerogen in selected black mudstone. The evolutionary regime of kerogens (for instance, the immaturity, early maturity, midd...Terahertz time-domain spectroscopy (THz-TDS) has been used to probe the evolutionary paths of kerogen in selected black mudstone. The evolutionary regime of kerogens (for instance, the immaturity, early maturity, middle maturity, late maturity, and catagenesis stages) can be indicated by the absorption coefficient in the THz region. The present study of identification based on THz-TDS was in good agreement with programmed pyrolysis experiments and suggests that THz technology can act as a nondestructive, contact-free tool for probing the ability to generate hydrocarbons from kerogens.展开更多
Brush scrubber cleaning is widely used for post chemical mechanical polishing(CMP)cleaning in semiconductor manufacturing.In this study,an experimental system based on fluorescence technique and particle-tracking velo...Brush scrubber cleaning is widely used for post chemical mechanical polishing(CMP)cleaning in semiconductor manufacturing.In this study,an experimental system based on fluorescence technique and particle-tracking velocimetry(PTV)technique was employed to characterize the particle removal displacement and velocity in the interface between a transparent copper film and a porous polyvinyl alcohol(PVA)brush during the cleaning process.Several different cleaning conditions including rotation speeds,loading pressure and cleaning agent were examined and the particle removal rate was compared.Elastic and friction removal,hydrodynamic removal and mixed-type removal are the three types of particle removal.Particles with an arc trace and uniform velocity curves were removed by friction and elastic force which were related to the brush load.Particles with a random trace and fluctuant velocity curves were removed by hydrodynamic force which was determined by the brush rotation speed.The increase of particle removal rate(PRR)with brush rotation speed is a logistic function.It is easier to improve PRR by increasing the brush load or by adding surfactant than by increasing the brush rotation speed.展开更多
The synthesis of high quality all-inorganic perovskite nanowires needs the harsh conditions,complex process and precision instruments,which are not beneficial to their extensive application.Here,all-inorganic perovski...The synthesis of high quality all-inorganic perovskite nanowires needs the harsh conditions,complex process and precision instruments,which are not beneficial to their extensive application.Here,all-inorganic perovskite ce- sium lead bromine (CsPbBr3)nanowires (NWs)are demonstrated with the combination of solution-phase process and halide exchange technology.A metal-semiconductor-metal structure CsPbBr3 nanowire photodetector was prepared, which showed a detectivity as high as 1.7×10^11 cm Hz^1/2W^-1 (Jones)with rapid response time (The rise and decay time are 10ms and 22 ms,respectively).Moreover,our photodetectors have high stability under ultraviolet (UV)light,high temperature and humidity.展开更多
This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, ...This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and various techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.展开更多
Inspired by the great success of ultrathin two-dimensional(2D)layered crystals,more and more attention is being paid to preparing 2D nanostructures from non-layered materials.They can significantly enrich the 2D mater...Inspired by the great success of ultrathin two-dimensional(2D)layered crystals,more and more attention is being paid to preparing 2D nanostructures from non-layered materials.They can significantly enrich the 2D materials and 2D heterostructures family,extend their application prospects,and bring us distinct properties from their bulk counterparts due to the strong 2D confinement effect.However,the realization of 2D non-layered semiconductors with strong light-harvesting capability and the ability to construct high-performance 2D heterostructures is still a critical challenge.Herein,we successfully synthesized 2D PbSe semiconductors with a large lateral dimension and ultrathin thickness via van der Waals epitaxy.The fabricated 2D PbSe device exhibits good electrical conductivity and superior multi-wavelength photoresponse performance with high responsivity(∼10^(3) A/W)and impressive detectivity(∼2×10^(11) Jones).Furthermore,we demonstrate that 2D PbSe nanosheets can serve as component units for constructing high-performance heterostructure devices.With our strategy,ultrahigh current on/off ratio(∼10^(8))and rectification ratio(∼10^()6),as well as high responsivity(∼3×10^(3) A/W)and detectivity(∼7×10^(12) Jones),can be achieved in PbSe/MoS_(2) back-gated transistors.These results indicate that 2D PbSe nanosheets and their heterostructures have tremendous applications potential in electrical and optoelectronic devices.展开更多
文摘A new non-contact inspection technique based on laser-PSD (position sensitive detector) to inspect the inner surface of small-diameter pipe is proposed,and the corresponding sensor has been developed. After being reflected by two mirrors in series,a laser beam is projected onto the inner wall of a pipe as a small light spot and is read by a two-dimensional PSD. Based on the signals from the PSD and the structure parameters of the sensor,the spot position on the wall can be calculated in a local 3D coordinate system. The spot controlled by the micro-motor driven mirrors will scan a closed section ring on the inner wall of the pipe to obtain the relative coordinates of all the sampled points. The data will be then processed through data segmentation and least square fitting,to reconstruct the section curve used for obtaining the radius and the defect description of the section. Driven by a micro-pipe robot,the sensor can inspect a long curved pipe and obtain its 3-D reconstruction. An inspection system based on this technique can detect the mini-diarneter pipe with an inner diameter of 9.5 mm-10.5 mm and a curvature radius larger than 100 mm at a measurement accuracy of the inner surface defect of ±0.1 mm.
基金supported by the National Natural Science Foundation of China(61805044,62004071 and 11674310)the Key Platforms and Research Projects of Department of Education of Guangdong Province(2018KTSCX050)+1 种基金Guangdong Provincial Key Laboratory of Information Photonics Technology(2020B121201011)"The Pearl River Talent Recruitment Program"(2019ZT08X639)。
文摘The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intriguing optical and electronic properties,making it an attractive photosensitive material for optoelectronic applications.However,the lack of an effective built-in electric field and photoconductive gain mechanism in 2D WS_(2)impedes its application in high-performance photodetectors.Herein,we propose a hybrid heterostructure photodetector that contains 1D Te and 2D WS_(2).In this device,1D Te induces in-plane strain in 2D WS_(2),which regulates the electronic structures of local WS_(2)and gives rise to type-Ⅱ band alignment in the horizontal direction.Moreover,the vertical heterojunction built of 2D WS_(2)and 1D Te introduces a high photoconductive gain.Benefiting from these two effects,the transfer of photogenerated carriers is optimized,and the proposed photodetector exhibits high sensitivity(photoresponsivity of ~27.7 A W^(-1),detectivity of 9.5×10^(12)Jones,and short rise/decay time of 19.3/17.6 ms).In addition,anisotropic photodetection characteristics with a dichroic ratio up to 2.1 are achieved.This hybrid 1D/2D heterostructure overcomes the inherent limitations of each material and realizes novel properties,opening up a new avenue towards constructing multifunctional optoelectronic devices.
基金the National Key Basic Research Program of China (Grant No. 2013CB328706)the Specially Funded Program on National Key Scientific Instruments and Equipment Development (Grant No. 2012YQ14005)+1 种基金the Beijing National Science Foundation (Grant No. 4122064)the Science Foundation of the China University of Petro-leum (Beijing) (Grant Nos. QZDX-2010-01 and KYJJ2012-06-27)
文摘Terahertz time-domain spectroscopy (THz-TDS) has been used to probe the evolutionary paths of kerogen in selected black mudstone. The evolutionary regime of kerogens (for instance, the immaturity, early maturity, middle maturity, late maturity, and catagenesis stages) can be indicated by the absorption coefficient in the THz region. The present study of identification based on THz-TDS was in good agreement with programmed pyrolysis experiments and suggests that THz technology can act as a nondestructive, contact-free tool for probing the ability to generate hydrocarbons from kerogens.
基金supported by the National Natural Science Foundation of China(Grant No.51205006)the Tribology Science Fund of State Key Laboratory of Tribology and the Program for Excellent Talents by the Beijing Ministry of Organization
文摘Brush scrubber cleaning is widely used for post chemical mechanical polishing(CMP)cleaning in semiconductor manufacturing.In this study,an experimental system based on fluorescence technique and particle-tracking velocimetry(PTV)technique was employed to characterize the particle removal displacement and velocity in the interface between a transparent copper film and a porous polyvinyl alcohol(PVA)brush during the cleaning process.Several different cleaning conditions including rotation speeds,loading pressure and cleaning agent were examined and the particle removal rate was compared.Elastic and friction removal,hydrodynamic removal and mixed-type removal are the three types of particle removal.Particles with an arc trace and uniform velocity curves were removed by friction and elastic force which were related to the brush load.Particles with a random trace and fluctuant velocity curves were removed by hydrodynamic force which was determined by the brush rotation speed.The increase of particle removal rate(PRR)with brush rotation speed is a logistic function.It is easier to improve PRR by increasing the brush load or by adding surfactant than by increasing the brush rotation speed.
基金supported by the National Natural Science Foundation of China (51372075)
文摘The synthesis of high quality all-inorganic perovskite nanowires needs the harsh conditions,complex process and precision instruments,which are not beneficial to their extensive application.Here,all-inorganic perovskite ce- sium lead bromine (CsPbBr3)nanowires (NWs)are demonstrated with the combination of solution-phase process and halide exchange technology.A metal-semiconductor-metal structure CsPbBr3 nanowire photodetector was prepared, which showed a detectivity as high as 1.7×10^11 cm Hz^1/2W^-1 (Jones)with rapid response time (The rise and decay time are 10ms and 22 ms,respectively).Moreover,our photodetectors have high stability under ultraviolet (UV)light,high temperature and humidity.
基金financial support during The Next Detectors for Gravitational Wave Astronomy workshop in Beijing in 2015
文摘This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and various techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.
基金supported by the National Key R&D Program of China(2018YFA0703700)the National Natural Science Foundation of China(91964203,62104171,62104172,and 62004142)+2 种基金the Natural Science Foundation of Hubei Province(2021CFB037)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB44000000)the Fundamental Research Funds for the Central Universities(2042021kf0067)。
文摘Inspired by the great success of ultrathin two-dimensional(2D)layered crystals,more and more attention is being paid to preparing 2D nanostructures from non-layered materials.They can significantly enrich the 2D materials and 2D heterostructures family,extend their application prospects,and bring us distinct properties from their bulk counterparts due to the strong 2D confinement effect.However,the realization of 2D non-layered semiconductors with strong light-harvesting capability and the ability to construct high-performance 2D heterostructures is still a critical challenge.Herein,we successfully synthesized 2D PbSe semiconductors with a large lateral dimension and ultrathin thickness via van der Waals epitaxy.The fabricated 2D PbSe device exhibits good electrical conductivity and superior multi-wavelength photoresponse performance with high responsivity(∼10^(3) A/W)and impressive detectivity(∼2×10^(11) Jones).Furthermore,we demonstrate that 2D PbSe nanosheets can serve as component units for constructing high-performance heterostructure devices.With our strategy,ultrahigh current on/off ratio(∼10^(8))and rectification ratio(∼10^()6),as well as high responsivity(∼3×10^(3) A/W)and detectivity(∼7×10^(12) Jones),can be achieved in PbSe/MoS_(2) back-gated transistors.These results indicate that 2D PbSe nanosheets and their heterostructures have tremendous applications potential in electrical and optoelectronic devices.