Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tet...Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.展开更多
Photoperiod and temperature are two pivotal regulatory factors of plant flowering. The floral transition of plants depends on accurate measurement of changes in photoperiod and temperature. The flowering time of rice ...Photoperiod and temperature are two pivotal regulatory factors of plant flowering. The floral transition of plants depends on accurate measurement of changes in photoperiod and temperature. The flowering time of rice (Oryza sativa) as a facultative short-day (SD) plant is delayed under long-day (LD) and/or low temperature conditions. To elucidate the regulatory functions of photoperiod and temperature on flowering time in rice, we systematically analyzed the expression and regulation of several key genes (Hd3a, RFT1, Ehdl, Ghd7, RID1/Ehd2/OsIdl, Se5) involved in the photoperiodic flowering regulatory pathway under different temperature and photoperiod treatments using a photoperiod-insensitive mutant and wild type plants. Our re- sults indicate that the Ehdl-Hd3a/RFT1 pathway is common to and conserved in both the photoperiodic and temperature flow- ering regulatory pathways. Expression of Ehdl, Hd3a and RFT1 is dramatically reduced at low temperature (23~C), suggesting that suppression of Ehdl, Hd3a and RFT1 transcription is an essential cause of delayed flowering under low temperature con- dition. Under LD condition, Ghd7 mRNA levels are promoted at low temperature (23~C) compared with normal temperature condition (28℃), suggesting low temperature and LD treatment have a synergistic role in the expression of Ghd7. Therefore, upregulation of Ghd7 might be a crucial cause of delayed flowering under low temperature condition. We also analyzed Hdl regulatory relationships in the photoperiodic flowering pathway, and found that Hdl can negatively regulate Ehdl transcription under LD condition. In addition, Hdl can also positively regulate Ghd7 transcription under LD condition, suggesting that the heading-date of rice under LD condition is also regulated by the Hdl-Ghd7-Ehdl-RFT1 pathway.展开更多
In this work, epitaxial growth of LaMnO3 thin films on different substrates using pulsed laser deposition under tensile and compressive strain was studied. The intrinsic exchange bias effect was observed in the single...In this work, epitaxial growth of LaMnO3 thin films on different substrates using pulsed laser deposition under tensile and compressive strain was studied. The intrinsic exchange bias effect was observed in the single A-type antiferromagnetic LaMnO3 films no matter whether the tensile or compressive strain was supplied by the substrates. Due to the lattice mismatch between the film and different substrates, the intense strain can induce MnO6 octahedral rotation in the bottom region of the film neighboring the substrate, which leads to the distortion of MnO6 octahedron and the net magnetic behavior. However, the upper part maintains the original A-type antiferromagnetic order due to strain relaxation. The exchange bias effect in single films is attributed to the coupling between the bottom canted magnetic part and the upper antiferromagnetic region. The observation of exchange bias in single films on different substrates enables the emergence of a new class of biasing components in spintronics, which are based on strain-engineering.展开更多
基金supported by Anhui Province Natural Science Funds(2008085QE209)K2020-03 from the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)。
文摘Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31171515 and 30871328)Tianjin Natural Science Foundation of China (Grant No. 11JCZDJC17900)+1 种基金the Program of Tian-jin Municipal Education Commission (Grant No. 20090609)Knowledge Innovation Program of Tianjin Normal University (Grant No. 52X09039)
文摘Photoperiod and temperature are two pivotal regulatory factors of plant flowering. The floral transition of plants depends on accurate measurement of changes in photoperiod and temperature. The flowering time of rice (Oryza sativa) as a facultative short-day (SD) plant is delayed under long-day (LD) and/or low temperature conditions. To elucidate the regulatory functions of photoperiod and temperature on flowering time in rice, we systematically analyzed the expression and regulation of several key genes (Hd3a, RFT1, Ehdl, Ghd7, RID1/Ehd2/OsIdl, Se5) involved in the photoperiodic flowering regulatory pathway under different temperature and photoperiod treatments using a photoperiod-insensitive mutant and wild type plants. Our re- sults indicate that the Ehdl-Hd3a/RFT1 pathway is common to and conserved in both the photoperiodic and temperature flow- ering regulatory pathways. Expression of Ehdl, Hd3a and RFT1 is dramatically reduced at low temperature (23~C), suggesting that suppression of Ehdl, Hd3a and RFT1 transcription is an essential cause of delayed flowering under low temperature con- dition. Under LD condition, Ghd7 mRNA levels are promoted at low temperature (23~C) compared with normal temperature condition (28℃), suggesting low temperature and LD treatment have a synergistic role in the expression of Ghd7. Therefore, upregulation of Ghd7 might be a crucial cause of delayed flowering under low temperature condition. We also analyzed Hdl regulatory relationships in the photoperiodic flowering pathway, and found that Hdl can negatively regulate Ehdl transcription under LD condition. In addition, Hdl can also positively regulate Ghd7 transcription under LD condition, suggesting that the heading-date of rice under LD condition is also regulated by the Hdl-Ghd7-Ehdl-RFT1 pathway.
基金financially supported by the National Key R&D Program of China (2017YFB0405703)the National Natural Science Foundation of China (51871137, 61434002 and 51571136)the Special Funds of Sanjin Scholars Program
文摘In this work, epitaxial growth of LaMnO3 thin films on different substrates using pulsed laser deposition under tensile and compressive strain was studied. The intrinsic exchange bias effect was observed in the single A-type antiferromagnetic LaMnO3 films no matter whether the tensile or compressive strain was supplied by the substrates. Due to the lattice mismatch between the film and different substrates, the intense strain can induce MnO6 octahedral rotation in the bottom region of the film neighboring the substrate, which leads to the distortion of MnO6 octahedron and the net magnetic behavior. However, the upper part maintains the original A-type antiferromagnetic order due to strain relaxation. The exchange bias effect in single films is attributed to the coupling between the bottom canted magnetic part and the upper antiferromagnetic region. The observation of exchange bias in single films on different substrates enables the emergence of a new class of biasing components in spintronics, which are based on strain-engineering.