TN25 2005053633 光通信用塑料光纤及其系统应用=Plastic optical fiber for optical communication system and its application[刊,中]/ 武鹏(北京邮电大学光通信与光波技术教育部重点实验 室.北京(100876)).任晓敏…∥光通信技术....TN25 2005053633 光通信用塑料光纤及其系统应用=Plastic optical fiber for optical communication system and its application[刊,中]/ 武鹏(北京邮电大学光通信与光波技术教育部重点实验 室.北京(100876)).任晓敏…∥光通信技术.-2005,29 (5).-42-46 详细分析了塑料光纤的结构、特性以及其相关通信系 统网络组件;应用质子注入技术解决了塑料光纤通信系统 光探测器光敏面积和响应带宽之间的矛盾;最后通过最新 的塑料光纤通信系统应用总结了塑料光纤的现状,讨论了 POF通信系统其面临的问题。图3表1参17(于晓光)展开更多
The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl...The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl group (-OH) of TiO2 microspheres surface and the amino group (-NH2) of CuAPTPP reacted respectively with the active -NCO groups of TDI to form a surface conjugated microsphere CuAPTPP-TDI-TiO2 that was confirmed by FT-IR spectra. The CuAPTPP-TDI-TiO2 microspheres were characterized with UV-visible, elemental analysis, XRD, SEM, and UV-Vis diffuse reflectance spectra. The effect of amounts of linked TDI on the performance of photocatalytic microspheres was discussed, and the optimal molar ratio of TDI:TiO2 was established. The photocatalytic activity of CuAPTPP- TDI-TiO2 was evaluated using the photocatalytic degradation of methylene blue (MB) under visible-light irradiation. The results showed that, TDI, as a bond unit, was used to form a steady chemical brigdging bond linking CuAPTPP and the surface of TiO2 microspheres, and the prepared catalyst exhibited higher photocatalytic activity under visible-light irradiation for MB degradation. The degradation rate of 20 mg/L MB could reach 98.7% under Xe- lamp (150 W) irradiation in 120 rain. The degradation of MB followed the first-order reaction model under visible light irradiation, and the rate constant of 5.1× 10^-2 min-1 and the half- life of 11.3 min were achieved. And the new photocatalyst can be recycled for 4 times, remaining 90.0% MB degradation rate.展开更多
Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three- dimensional nanoarchitecturing techniques can afford enha...Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three- dimensional nanoarchitecturing techniques can afford enhanced photoelectrochemical properties by improving geometrical and structural effects. Here, we report quantum-dot sensitized TiO2-Sb:SnO2 heterostructures as a model electrode to enable the optimization of the structural effects through the creation of a highly conductive pathway using a transparent conducting oxide (TCO), coupled with a high surface area, by introducing branching and low interfacial resistance via an epitaxial relationship. An examination of various morphologies (dot, rod, and lamella shape) of TiO2 reveals that the rod-shaped TiO2-Sb:SnO2 is a more effective structure than the others. A photoelectrode fabricated using optimized CdS--TiO2-Sb:SnO2 produces a photocurrent density of 7.75 mA/cm2 at 0.4 V versus a reversible hydrogen electrode. These results demonstrate that constructing a branched heterostructure based on TCO can realize highperformance photoelectrochemical devices.展开更多
We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can al...We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10^-17 W (-85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 10^20 cm.Hz1/2.W^-1 and 6.6 × 10^5, respectively. It is found that the presence of the trapping states at the p-ZnS NWITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developiphigh-performance optoelectronic devices in the future.展开更多
文摘TN25 2005053633 光通信用塑料光纤及其系统应用=Plastic optical fiber for optical communication system and its application[刊,中]/ 武鹏(北京邮电大学光通信与光波技术教育部重点实验 室.北京(100876)).任晓敏…∥光通信技术.-2005,29 (5).-42-46 详细分析了塑料光纤的结构、特性以及其相关通信系 统网络组件;应用质子注入技术解决了塑料光纤通信系统 光探测器光敏面积和响应带宽之间的矛盾;最后通过最新 的塑料光纤通信系统应用总结了塑料光纤的现状,讨论了 POF通信系统其面临的问题。图3表1参17(于晓光)
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21276208), the Doctor Fundation of Education Ministry of China (No.20096118110008), the Special Research Fund of Shaanxi Provincial Department of Education of China (No.12JK0606), and the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (No.207-002J1304).
文摘The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl group (-OH) of TiO2 microspheres surface and the amino group (-NH2) of CuAPTPP reacted respectively with the active -NCO groups of TDI to form a surface conjugated microsphere CuAPTPP-TDI-TiO2 that was confirmed by FT-IR spectra. The CuAPTPP-TDI-TiO2 microspheres were characterized with UV-visible, elemental analysis, XRD, SEM, and UV-Vis diffuse reflectance spectra. The effect of amounts of linked TDI on the performance of photocatalytic microspheres was discussed, and the optimal molar ratio of TDI:TiO2 was established. The photocatalytic activity of CuAPTPP- TDI-TiO2 was evaluated using the photocatalytic degradation of methylene blue (MB) under visible-light irradiation. The results showed that, TDI, as a bond unit, was used to form a steady chemical brigdging bond linking CuAPTPP and the surface of TiO2 microspheres, and the prepared catalyst exhibited higher photocatalytic activity under visible-light irradiation for MB degradation. The degradation rate of 20 mg/L MB could reach 98.7% under Xe- lamp (150 W) irradiation in 120 rain. The degradation of MB followed the first-order reaction model under visible light irradiation, and the rate constant of 5.1× 10^-2 min-1 and the half- life of 11.3 min were achieved. And the new photocatalyst can be recycled for 4 times, remaining 90.0% MB degradation rate.
文摘Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three- dimensional nanoarchitecturing techniques can afford enhanced photoelectrochemical properties by improving geometrical and structural effects. Here, we report quantum-dot sensitized TiO2-Sb:SnO2 heterostructures as a model electrode to enable the optimization of the structural effects through the creation of a highly conductive pathway using a transparent conducting oxide (TCO), coupled with a high surface area, by introducing branching and low interfacial resistance via an epitaxial relationship. An examination of various morphologies (dot, rod, and lamella shape) of TiO2 reveals that the rod-shaped TiO2-Sb:SnO2 is a more effective structure than the others. A photoelectrode fabricated using optimized CdS--TiO2-Sb:SnO2 produces a photocurrent density of 7.75 mA/cm2 at 0.4 V versus a reversible hydrogen electrode. These results demonstrate that constructing a branched heterostructure based on TCO can realize highperformance photoelectrochemical devices.
文摘We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10^-17 W (-85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 10^20 cm.Hz1/2.W^-1 and 6.6 × 10^5, respectively. It is found that the presence of the trapping states at the p-ZnS NWITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developiphigh-performance optoelectronic devices in the future.