2-Hexyl-1-decanol was used as the main material to prepare a block-polyether sulfonate extended surfactant(IC_(16)P_(6)E_(6)S).The solubility and surface active properties of IC_(16)P_(6)E_(6)S were evaluated,and then...2-Hexyl-1-decanol was used as the main material to prepare a block-polyether sulfonate extended surfactant(IC_(16)P_(6)E_(6)S).The solubility and surface active properties of IC_(16)P_(6)E_(6)S were evaluated,and then the IC_(16)P_(6)E_(6)S was mixed with a cationic surfactant hexadecyl trimethyl ammonium bromide(CTAB)and a zwitterionic betaine surfactant(HAB),respectively.The effects of mixing ratios of IC_(16)P_(6)E_(6)S∶HAB and IC_(16)P_(6)E_(6)S∶CTAB on the hydrodynamic diameter and interfacial properties were discussed.The emulsification,adsorption and laboratory core displacement experiments of the binary system were tested.The results showed that the critical micelle concentration(cmc)of IC_(16)P_(6)E_(6)S in distilled water was 0.1 mmol/L and the surface tension at cmc(γcmc)was 28.53 mN/m.IC_(16)P_(6)E_(6)S showed strong synergistic effects with HAB and CTAB,and the mixed systems could effectively reduce the interfacial tension compared with single surfactants.The mixed systems with n(IC_(16)P_(6)E_(6)S)∶n(HAB)of 1∶1 and n(IC_(16)P_(6)E_(6)S)∶n(CTAB)of 1∶3 could maintain ultra-low interfacial tension(in the order of magnitude of 10^(-3)mN/m)in the salinity range of 1%-7%NaCl and low interfacial tension(in the order of magnitude of 10^(-2)mN/m)in the salinity range of 3%-7%NaCl,respectively.With the increase of salinity,the emulsion formed by the mixed surfactant system underwent the phase transition process from WinsorⅠto WinsorⅢand then to WinsorⅡ.The emulsion of mixed IC_(16)P_(6)E_(6)S/HAB system had more middle-phase emulsion volume than that of the mixed IC_(16)P_(6)E_(6)S/CTAB system,and the former emulsion system was more stable.The mixed IC_(16)P_(6)E_(6)S/HAB system also had good solubilization effect,and the amount of oil solubilization was up to 43 mL/g.Meanwhile,it had good adsorption resistance.Compared with water flooding,the depressurization rate could reach 25.00%and the recovery could be enhanced by 11.75%,indicating that the IC_(16)P_(6)E_(6)S/HAB system was more conducive to the depressurization and injection enhancement for low-permeability reservoirs.展开更多
The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-bandogap (PBG) reservoir. ...The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-bandogap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by leading to some curious phenomena. Numerical simulations the upper and lower bands in such a PBG material, thus are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir.展开更多
Randomly oriented ZnO microsheets were successfully self-assembled on TiO2 nanoparticle(TN) film to act as the scattering layer via a cathodic electrodeposition process.The light scattering properties of ZnO microshee...Randomly oriented ZnO microsheets were successfully self-assembled on TiO2 nanoparticle(TN) film to act as the scattering layer via a cathodic electrodeposition process.The light scattering properties of ZnO microsheets were studied by UV-Vis spectrometer in the 400-800 nm wavelength range.It was found that ZnO microsheets exhibited excellent ability to scatter the incident light for ZnO microsheet-TiO2 nanoparticle(ZT) composite films.The results showed that dye-sensitized solar cells(DSSCs) fabricated with ZT composite films showed higher short-circuit density(Jsc) and conversion efficiency than TN-based DSSCs,due to the light scattering properties of ZnO microsheets.展开更多
文摘2-Hexyl-1-decanol was used as the main material to prepare a block-polyether sulfonate extended surfactant(IC_(16)P_(6)E_(6)S).The solubility and surface active properties of IC_(16)P_(6)E_(6)S were evaluated,and then the IC_(16)P_(6)E_(6)S was mixed with a cationic surfactant hexadecyl trimethyl ammonium bromide(CTAB)and a zwitterionic betaine surfactant(HAB),respectively.The effects of mixing ratios of IC_(16)P_(6)E_(6)S∶HAB and IC_(16)P_(6)E_(6)S∶CTAB on the hydrodynamic diameter and interfacial properties were discussed.The emulsification,adsorption and laboratory core displacement experiments of the binary system were tested.The results showed that the critical micelle concentration(cmc)of IC_(16)P_(6)E_(6)S in distilled water was 0.1 mmol/L and the surface tension at cmc(γcmc)was 28.53 mN/m.IC_(16)P_(6)E_(6)S showed strong synergistic effects with HAB and CTAB,and the mixed systems could effectively reduce the interfacial tension compared with single surfactants.The mixed systems with n(IC_(16)P_(6)E_(6)S)∶n(HAB)of 1∶1 and n(IC_(16)P_(6)E_(6)S)∶n(CTAB)of 1∶3 could maintain ultra-low interfacial tension(in the order of magnitude of 10^(-3)mN/m)in the salinity range of 1%-7%NaCl and low interfacial tension(in the order of magnitude of 10^(-2)mN/m)in the salinity range of 3%-7%NaCl,respectively.With the increase of salinity,the emulsion formed by the mixed surfactant system underwent the phase transition process from WinsorⅠto WinsorⅢand then to WinsorⅡ.The emulsion of mixed IC_(16)P_(6)E_(6)S/HAB system had more middle-phase emulsion volume than that of the mixed IC_(16)P_(6)E_(6)S/CTAB system,and the former emulsion system was more stable.The mixed IC_(16)P_(6)E_(6)S/HAB system also had good solubilization effect,and the amount of oil solubilization was up to 43 mL/g.Meanwhile,it had good adsorption resistance.Compared with water flooding,the depressurization rate could reach 25.00%and the recovery could be enhanced by 11.75%,indicating that the IC_(16)P_(6)E_(6)S/HAB system was more conducive to the depressurization and injection enhancement for low-permeability reservoirs.
基金Supported by the National Natural Science Foundation of China under Grant Nos.91021011,10975054,11004069,and 10874050the Doctoral Foundation of the Ministry of Education of China under Grant Nos.200804870051,20100142120081the Innovation Foundation from Huazhong University of Science and Technology under Grant No.2010MS074
文摘The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-bandogap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by leading to some curious phenomena. Numerical simulations the upper and lower bands in such a PBG material, thus are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir.
基金supported by the National Natural Science Foundation of China (50702079)the National High-Tech Research and Development Program of China (2006AA05Z409)
文摘Randomly oriented ZnO microsheets were successfully self-assembled on TiO2 nanoparticle(TN) film to act as the scattering layer via a cathodic electrodeposition process.The light scattering properties of ZnO microsheets were studied by UV-Vis spectrometer in the 400-800 nm wavelength range.It was found that ZnO microsheets exhibited excellent ability to scatter the incident light for ZnO microsheet-TiO2 nanoparticle(ZT) composite films.The results showed that dye-sensitized solar cells(DSSCs) fabricated with ZT composite films showed higher short-circuit density(Jsc) and conversion efficiency than TN-based DSSCs,due to the light scattering properties of ZnO microsheets.