In this paper, the dynamics of coherent laser control of potassium atoms is studied by using the time-dependent multilevel approach (TDMA). The calculation results of population transfer are presented with different...In this paper, the dynamics of coherent laser control of potassium atoms is studied by using the time-dependent multilevel approach (TDMA). The calculation results of population transfer are presented with different laser fields. The results show that the population can be transferred to target state completely by a specially designed laser field.展开更多
A novel variable structure control (VSC) strategy with a dynamic disturbance compensator based on the reaching law for a class of uncertain discrete systems is presented. The robust stability to disturbance and the sy...A novel variable structure control (VSC) strategy with a dynamic disturbance compensator based on the reaching law for a class of uncertain discrete systems is presented. The robust stability to disturbance and the system dynamics in the vicinity of the switching plane are studied. A measure of the uncertain parameters and external disturbance is obtained through delaying every sampling time. Theoretical analysis and experimental simulation results demonstrate that the dynamic performance and robustness of the closed-loop system are improved effectively.展开更多
基金Project supported by the Natural Science Foundation of Henan province, China (Grant No 0411011900).
文摘In this paper, the dynamics of coherent laser control of potassium atoms is studied by using the time-dependent multilevel approach (TDMA). The calculation results of population transfer are presented with different laser fields. The results show that the population can be transferred to target state completely by a specially designed laser field.
基金Funded by the Natural Science Foundation of China (No.60274020 and 69974017) Hebei Natural Science Foundation (No. 602621) and Guangxi Natural Science Foundation (No. 0135065).
文摘A novel variable structure control (VSC) strategy with a dynamic disturbance compensator based on the reaching law for a class of uncertain discrete systems is presented. The robust stability to disturbance and the system dynamics in the vicinity of the switching plane are studied. A measure of the uncertain parameters and external disturbance is obtained through delaying every sampling time. Theoretical analysis and experimental simulation results demonstrate that the dynamic performance and robustness of the closed-loop system are improved effectively.