Rayleigh wave imaging is efficient in estimating the shear- (S) wave velocity in near-surface exploration. The key is to accurately extract the dispersion of Rayleigh wave. We propose a method to calculate the dispe...Rayleigh wave imaging is efficient in estimating the shear- (S) wave velocity in near-surface exploration. The key is to accurately extract the dispersion of Rayleigh wave. We propose a method to calculate the dispersion of the active-source Rayleigh wavefield by using the Aki formulation. The spectrum after the cross correlation of two-channel records in the frequency domain is expressed by the Bessel function. Using the corresponding relation between the zero point of the spectrum real part and the Bessel function root, the phase velocity at the discrete frequency point is obtained and the dispersion curve is extracted. First, the theoretical basis and calculation method used in the active-source Rayleigh wave data are introduced. Then, three sets of theoretical models are calculated by this method and the results are consistent with the theoretical dispersion. Finally, we process a group of real Rayleigh wave data and obtain the phase velocity profiles and compared them with the results obtained by the multichannel surface wave analysis method. The effectiveness and applicability of the Aki method in active-source data processing are verified. Compared with multichannel wave processing, the advantage of the Aki method lies in the use of two- channel data in a single-shot record. When the number of acquisition channels in a shot gathers is insufficient or there is a bad channel, the quality of the extracted dispersion is guaranteed.展开更多
The spectral radiative entransy flux and the total radiative entransy flux are defined for the steady radiative heat transfer processes in enclosures composed of non-isothermal or non-grey, opaque, diffuse surfaces. B...The spectral radiative entransy flux and the total radiative entransy flux are defined for the steady radiative heat transfer processes in enclosures composed of non-isothermal or non-grey, opaque, diffuse surfaces. Based on the definitions, the radiative entransy flux balance equation and the radiative entransy dissipation functions are introduced under spectral and total wavelength condition. Furthermore, the minimum principle of radiative entransy loss, the extreme principle of radiative entransy dissipation and the minimum principle of radiative thermal resistance are developed. The minimum prirlciple of radiative en- transy loss shows that the potential and the net radiative heat flux distribution which meet the control equations and the boundary conditions would make the radiative entransy loss minimum if the net radiative heat flux or the potential distribution of the radiative heat transfer system is given. The extreme principle of radiative entransy dissipation indicates that the minimum radiative entransy dissipation leads to the minimum average potential difference for the prescribed total radiative heat exchange and the maximum radiative entransy dissipation leads to the maximum radiative heat exchange for the prescribed average potential difference. Moreover, the minimum principle of radiative thermal resistance tells us that the aforementioned extreme values of radiative entransy dissipation both correspond to the minimum value of radiative thermal resistance. Application examples are given for the extreme principle of spectral radiative entransy dissipation and the minimum principle of spectral radiative thermal resistance, and the principles are proved to be applicable.展开更多
Flexible laser display is a critical component for an information output port in next-generation wearable devices.So far,the lack of appropriate display panels capable of providing sustained operation under rigorous m...Flexible laser display is a critical component for an information output port in next-generation wearable devices.So far,the lack of appropriate display panels capable of providing sustained operation under rigorous mechanical conditions impedes the development of flexible laser displays with high reliability.Owing to the multiple scattering feedback mechanism,random lasers render high mechanical flexibility to withstand deformation,thus making them promising candidates for flexible display planes.However,the inability to obtain pixelated random laser arrays with highly ordered emissive geometries hinders the application of flexible laser displays in the wearable device.Here,for the first time,we demonstrate a mass fabrication strategy of full-color random laser arrays for flexible display panels.The feedback closed loops can be easily fulfilled in the pixels by multiple scatterings to generate durative random lasing.Due to the sustained operation of random laser,the display performance was well-maintained under mechanical deformations,and as a result,a flexible laser display panel was achieved.Our finding will provide a guidance for the development of flexible laser displays and laser illumination devices.展开更多
基金This research was jointly supported by the National Natural Science Foundation of China (No.s 41374145 and 41004043) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JM4003).
文摘Rayleigh wave imaging is efficient in estimating the shear- (S) wave velocity in near-surface exploration. The key is to accurately extract the dispersion of Rayleigh wave. We propose a method to calculate the dispersion of the active-source Rayleigh wavefield by using the Aki formulation. The spectrum after the cross correlation of two-channel records in the frequency domain is expressed by the Bessel function. Using the corresponding relation between the zero point of the spectrum real part and the Bessel function root, the phase velocity at the discrete frequency point is obtained and the dispersion curve is extracted. First, the theoretical basis and calculation method used in the active-source Rayleigh wave data are introduced. Then, three sets of theoretical models are calculated by this method and the results are consistent with the theoretical dispersion. Finally, we process a group of real Rayleigh wave data and obtain the phase velocity profiles and compared them with the results obtained by the multichannel surface wave analysis method. The effectiveness and applicability of the Aki method in active-source data processing are verified. Compared with multichannel wave processing, the advantage of the Aki method lies in the use of two- channel data in a single-shot record. When the number of acquisition channels in a shot gathers is insufficient or there is a bad channel, the quality of the extracted dispersion is guaranteed.
基金supported by Tsinghua University Initiative Scientific Research Program
文摘The spectral radiative entransy flux and the total radiative entransy flux are defined for the steady radiative heat transfer processes in enclosures composed of non-isothermal or non-grey, opaque, diffuse surfaces. Based on the definitions, the radiative entransy flux balance equation and the radiative entransy dissipation functions are introduced under spectral and total wavelength condition. Furthermore, the minimum principle of radiative entransy loss, the extreme principle of radiative entransy dissipation and the minimum principle of radiative thermal resistance are developed. The minimum prirlciple of radiative en- transy loss shows that the potential and the net radiative heat flux distribution which meet the control equations and the boundary conditions would make the radiative entransy loss minimum if the net radiative heat flux or the potential distribution of the radiative heat transfer system is given. The extreme principle of radiative entransy dissipation indicates that the minimum radiative entransy dissipation leads to the minimum average potential difference for the prescribed total radiative heat exchange and the maximum radiative entransy dissipation leads to the maximum radiative heat exchange for the prescribed average potential difference. Moreover, the minimum principle of radiative thermal resistance tells us that the aforementioned extreme values of radiative entransy dissipation both correspond to the minimum value of radiative thermal resistance. Application examples are given for the extreme principle of spectral radiative entransy dissipation and the minimum principle of spectral radiative thermal resistance, and the principles are proved to be applicable.
基金financially supported by the Ministry of Science and Technology of China(2017YFA0204502)the National Natural Science Foundation of China(21790364)。
文摘Flexible laser display is a critical component for an information output port in next-generation wearable devices.So far,the lack of appropriate display panels capable of providing sustained operation under rigorous mechanical conditions impedes the development of flexible laser displays with high reliability.Owing to the multiple scattering feedback mechanism,random lasers render high mechanical flexibility to withstand deformation,thus making them promising candidates for flexible display planes.However,the inability to obtain pixelated random laser arrays with highly ordered emissive geometries hinders the application of flexible laser displays in the wearable device.Here,for the first time,we demonstrate a mass fabrication strategy of full-color random laser arrays for flexible display panels.The feedback closed loops can be easily fulfilled in the pixels by multiple scatterings to generate durative random lasing.Due to the sustained operation of random laser,the display performance was well-maintained under mechanical deformations,and as a result,a flexible laser display panel was achieved.Our finding will provide a guidance for the development of flexible laser displays and laser illumination devices.