同步辐射光束位置稳定性对光束强度至关重要,直接会影响到实验数据的质量,因此需要在实验过程中对光束位置进行实时监测.在同步辐射光束线上一般会使用双丝型的光束位置监测器(beam position monitor,BPM)扫描光束,获得光束的截面分布,...同步辐射光束位置稳定性对光束强度至关重要,直接会影响到实验数据的质量,因此需要在实验过程中对光束位置进行实时监测.在同步辐射光束线上一般会使用双丝型的光束位置监测器(beam position monitor,BPM)扫描光束,获得光束的截面分布,同时在固定位置的双丝会对光束位置进行静态的实时监测.但是这种监测方式对于入射光束分布有特殊的要求,当光束较大地偏离原有位置时会对双丝BPM造成损伤的危险.北京同步辐射1W2B生物大分子实验站通过采用双丝型BPM实时动态跟踪监测方式,有效地解决了常规监测方式带来的光束分布和光敏丝损伤问题,为实验光束的稳定性研究提供了基础.展开更多
Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability ...Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.展开更多
文摘同步辐射光束位置稳定性对光束强度至关重要,直接会影响到实验数据的质量,因此需要在实验过程中对光束位置进行实时监测.在同步辐射光束线上一般会使用双丝型的光束位置监测器(beam position monitor,BPM)扫描光束,获得光束的截面分布,同时在固定位置的双丝会对光束位置进行静态的实时监测.但是这种监测方式对于入射光束分布有特殊的要求,当光束较大地偏离原有位置时会对双丝BPM造成损伤的危险.北京同步辐射1W2B生物大分子实验站通过采用双丝型BPM实时动态跟踪监测方式,有效地解决了常规监测方式带来的光束分布和光敏丝损伤问题,为实验光束的稳定性研究提供了基础.
基金Project(2021MD703848) supported by the China Postdoctoral Science FoundationProjects(52174229, 52174230)supported by the National Natural Science Foundation of China+1 种基金Project(2021-KF-23-04) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2020CXNL10) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.