提出一种基于骨架邻近像素匹配的线结构光条中心提取方法,分别在图像预处理阶段和光条中心提取阶段对传统方法进行改进.在图像预处理阶段,将马尔可夫随机场理论应用于二值图像去噪中,同时提出了一种基于连通域面积特性的ROI(region of i...提出一种基于骨架邻近像素匹配的线结构光条中心提取方法,分别在图像预处理阶段和光条中心提取阶段对传统方法进行改进.在图像预处理阶段,将马尔可夫随机场理论应用于二值图像去噪中,同时提出了一种基于连通域面积特性的ROI(region of interest)提取方法.在光条中心提取阶段,首先提出了一种光条骨架剪枝算法,对细化ROI得到的光条骨架进行剪枝、平滑,之后综合考虑光条图像的几何特性和灰度分布特性,基于邻近分析对ROI内各像素进行划分,继而求取出灰度重心,最后经Savitzky-Golay滤波后实现光条中心提取.实验结果表明,所提方法对不同类型光条的提取适用性强,相较于Steger法精度更高,且速度在其基础上提高了约6.98倍.展开更多
文摘提出一种基于骨架邻近像素匹配的线结构光条中心提取方法,分别在图像预处理阶段和光条中心提取阶段对传统方法进行改进.在图像预处理阶段,将马尔可夫随机场理论应用于二值图像去噪中,同时提出了一种基于连通域面积特性的ROI(region of interest)提取方法.在光条中心提取阶段,首先提出了一种光条骨架剪枝算法,对细化ROI得到的光条骨架进行剪枝、平滑,之后综合考虑光条图像的几何特性和灰度分布特性,基于邻近分析对ROI内各像素进行划分,继而求取出灰度重心,最后经Savitzky-Golay滤波后实现光条中心提取.实验结果表明,所提方法对不同类型光条的提取适用性强,相较于Steger法精度更高,且速度在其基础上提高了约6.98倍.