When plants absorb more light than that can be used for photosynthesis, the excessive energy can cause photoinhibition and even photooxidation of photosynthetic apparatus. Xanthophyll cycle-dependent photo-protection ...When plants absorb more light than that can be used for photosynthesis, the excessive energy can cause photoinhibition and even photooxidation of photosynthetic apparatus. Xanthophyll cycle-dependent photo-protection is believed to be the main mechanism for plants to deal with excessive light energy. This review focuses on molecular biological aspects and regulations of violaxanthin de-epoxidase and zeaxanthin epoxidase involved in xanthophyll cycle. We will summarize the functions of xanthophyll cycle, especially recent advances in its thermal dissipation mechanism of photoprotection. Some interesting issues deserving further study will be discussed.展开更多
Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advanta...Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advantages of SPR in metallic Bi and artificial defects to cooperatively enhance the photocatalytic performance of BiOI.The catalysts were prepared by partial reduction of BiOI to form Bi@defective BiOI,which showed highly enhanced visible photocatalytic activity for NOx removal.The effects of reductant quantity on the photocatalytic performance of Bi@defective BiOI were investigated.The as-prepared photocatalyst(Bi/BiOI-2)using 2 mmol of reductant NaBH4 showed the most efficient visible light photocatalytic activity.This enhanced activity can be ascribed to the synergistic effects of metallic Bi and oxygen vacancies.The electrons from the valence band tend to accumulate at vacancy states;therefore,the increased charge density would cause the adsorbed oxygen to transform more easily into superoxide radicals and,further,into hydroxyl radicals.These radicals are the main active species that oxidize NO into final products.The SPR effect of elemental Bi enables the improvement of visible light absorption efficiency and the promotion of charge carrier separation,which are crucial factors in boosting photocatalysis.NO adsorption and reaction processes on Bi/BiOI-2 were dynamically monitored by in situ infrared spectroscopy(FT-IR).The Bi/BiOI photocatalysis mechanism co-mediated by elemental Bi and oxygen vacancies was proposed based on the analysis of intermediate products and DFT calculations.This present work could provide new insights into the design of high-performance photocatalysts and understanding of the photocatalysis reaction mechanism for air-purification applications.展开更多
Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,s...Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,such as limited photo-response and low charge separation efficiency.In this work,we developed a facile method to introduce artificial oxygen vacancy into Bi2MoO6 microspheres,which could effectively address these problems and realize highly efficient visible light photocatalysis.The experimental and theoretical methods were combined to explore the effects of oxygen vacancy on the electronic structure,photocatalytic activity and the reaction mechanism toward NO removal.The results showed that the addition of NaBH4 during catalyst preparation induced the formation of oxygen vacancy in Bi2MoO6,which plays a significant role in extending the visible light absorption of Bi2MoO6.The visible light photocatalytic activity of Bi2MoO6 with oxygen vacancy was obviously enhanced with a NO removal ratio of 43.5%,in contrast to that of 25.0%with the pristine Bi2MoO6.This can be attributed to the oxygen vacancy that creates a defect energy level in the band gap of Bi2MoO6,thus facilitating the charge separation and transfer processes.Hence,more reactive radicals were generated and participated in the photocatalytic NO oxidation reaction.The in situ FT-IR was used to dynamically monitor the photocatalytic NO oxidation process.The reaction intermediates were observed and the adsorption-reaction mechanism was proposed.It was found that the reaction mechanism was unchanged by introducing the oxygen vacancy in Bi2MoO6.This work could provide new insights into the understanding of the oxygen vacancy in photocatalysis and gas-phase photocatalytic reaction mechanism.展开更多
Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen p...Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.展开更多
Three different nanorod-like gallium oxides with mono/poly-crystalline nature(α, β, and α/β-Ga2O3) were prepared by regulating the amount of polyethylene glycol(PEG) 6000 in the range of 0.2–0.8 g proportionally ...Three different nanorod-like gallium oxides with mono/poly-crystalline nature(α, β, and α/β-Ga2O3) were prepared by regulating the amount of polyethylene glycol(PEG) 6000 in the range of 0.2–0.8 g proportionally via a hydrothermal method combined with further calcination. The bandgap of the products, given by UV-Vis diffuse reflectance spectra(UV-Vis DRS), was in the order of α-Ga2O3 > α/β-Ga2O3 > β-Ga2O3. To further investigate the photocatalysis performance of the catalysts, the decomposition of rhodamine B(Rh B) by Ga2O3 under UV light illumination(λ < 387 nm) was presented and complete degradation could be achieved within 30 min, a result that showed the highest efficiency. The photocatalytic oxidation mechanism is further discussed and prominently related to the active species: hydroxyl radical(·OH) and superoxide radical(O·-2), which were confirmed by electron paramagnetic resonance(EPR).展开更多
文摘When plants absorb more light than that can be used for photosynthesis, the excessive energy can cause photoinhibition and even photooxidation of photosynthetic apparatus. Xanthophyll cycle-dependent photo-protection is believed to be the main mechanism for plants to deal with excessive light energy. This review focuses on molecular biological aspects and regulations of violaxanthin de-epoxidase and zeaxanthin epoxidase involved in xanthophyll cycle. We will summarize the functions of xanthophyll cycle, especially recent advances in its thermal dissipation mechanism of photoprotection. Some interesting issues deserving further study will be discussed.
基金supported by the National Natural Science Foundation of China(21501016,21777011 and 21822601)the National Key R&D Program of China(2016YFC02047)+2 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Key Natural Science Foundation of Chongqing(cstc2017jcyj BX0052)the National Ten Thousand Talent Program of China~~
文摘Surface plasmon resonance(SPR)of metals may provide a way to improve light absorption and utilization of semiconductors,achieving better solar light conversion and photocatalysis efficiency.This study uses the advantages of SPR in metallic Bi and artificial defects to cooperatively enhance the photocatalytic performance of BiOI.The catalysts were prepared by partial reduction of BiOI to form Bi@defective BiOI,which showed highly enhanced visible photocatalytic activity for NOx removal.The effects of reductant quantity on the photocatalytic performance of Bi@defective BiOI were investigated.The as-prepared photocatalyst(Bi/BiOI-2)using 2 mmol of reductant NaBH4 showed the most efficient visible light photocatalytic activity.This enhanced activity can be ascribed to the synergistic effects of metallic Bi and oxygen vacancies.The electrons from the valence band tend to accumulate at vacancy states;therefore,the increased charge density would cause the adsorbed oxygen to transform more easily into superoxide radicals and,further,into hydroxyl radicals.These radicals are the main active species that oxidize NO into final products.The SPR effect of elemental Bi enables the improvement of visible light absorption efficiency and the promotion of charge carrier separation,which are crucial factors in boosting photocatalysis.NO adsorption and reaction processes on Bi/BiOI-2 were dynamically monitored by in situ infrared spectroscopy(FT-IR).The Bi/BiOI photocatalysis mechanism co-mediated by elemental Bi and oxygen vacancies was proposed based on the analysis of intermediate products and DFT calculations.This present work could provide new insights into the design of high-performance photocatalysts and understanding of the photocatalysis reaction mechanism for air-purification applications.
基金supported by the National Natural Science Foundation of China(21501016,51501024,51871037 and 21822601)the Fundamental Research Funds for the Central Universities(2018CDQYCL0027)~~
文摘Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,such as limited photo-response and low charge separation efficiency.In this work,we developed a facile method to introduce artificial oxygen vacancy into Bi2MoO6 microspheres,which could effectively address these problems and realize highly efficient visible light photocatalysis.The experimental and theoretical methods were combined to explore the effects of oxygen vacancy on the electronic structure,photocatalytic activity and the reaction mechanism toward NO removal.The results showed that the addition of NaBH4 during catalyst preparation induced the formation of oxygen vacancy in Bi2MoO6,which plays a significant role in extending the visible light absorption of Bi2MoO6.The visible light photocatalytic activity of Bi2MoO6 with oxygen vacancy was obviously enhanced with a NO removal ratio of 43.5%,in contrast to that of 25.0%with the pristine Bi2MoO6.This can be attributed to the oxygen vacancy that creates a defect energy level in the band gap of Bi2MoO6,thus facilitating the charge separation and transfer processes.Hence,more reactive radicals were generated and participated in the photocatalytic NO oxidation reaction.The in situ FT-IR was used to dynamically monitor the photocatalytic NO oxidation process.The reaction intermediates were observed and the adsorption-reaction mechanism was proposed.It was found that the reaction mechanism was unchanged by introducing the oxygen vacancy in Bi2MoO6.This work could provide new insights into the understanding of the oxygen vacancy in photocatalysis and gas-phase photocatalytic reaction mechanism.
基金supported by the JSPS KAKENHI(16H02268)from MEXTJapan and by the CRI(2012R1A3A2048842)Basic Science Research Program(NRF-2020R1I1A1A01074630)through NRF of Korea.
文摘Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.
基金funded by the National Natural Science Foundation of China(21377067,21177072,and 21207079)the Natural Science Foundation for the Innovation Group of Hubei Province,China(2009CDA020)
文摘Three different nanorod-like gallium oxides with mono/poly-crystalline nature(α, β, and α/β-Ga2O3) were prepared by regulating the amount of polyethylene glycol(PEG) 6000 in the range of 0.2–0.8 g proportionally via a hydrothermal method combined with further calcination. The bandgap of the products, given by UV-Vis diffuse reflectance spectra(UV-Vis DRS), was in the order of α-Ga2O3 > α/β-Ga2O3 > β-Ga2O3. To further investigate the photocatalysis performance of the catalysts, the decomposition of rhodamine B(Rh B) by Ga2O3 under UV light illumination(λ < 387 nm) was presented and complete degradation could be achieved within 30 min, a result that showed the highest efficiency. The photocatalytic oxidation mechanism is further discussed and prominently related to the active species: hydroxyl radical(·OH) and superoxide radical(O·-2), which were confirmed by electron paramagnetic resonance(EPR).