A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion wer...A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion were conducted using a 365 nm wavelength UV light and Ti O2 particles as the photocatalyst. Sodium tripolyphosphate and sodium glycerophosphate were used as the typical components of TP and the digested samples were then determined by spectrophotometry after phosphomolybdenum blue reaction. The effects of operational parameters such as reaction time and temperature were studied for the digestion of TP and the kinetic analysis of two typical components was performed in this paper. The pseudo-first-order rate constants k of two phosphorus compounds at different temperatures were obtained and the Arrhenius equation was employed to explain the effect of temperature on rate constant k. Compared with the conventional thermal digestion method for TP detection, it was found that the temperature was decreased from 120 °C to 60 °C with same conversion rate and time in this thermal-assisted UV digestion method, which enabled the digestion process work at normal pressure. Compared with the individual ultra-violet(UV) photocatalysis process, the digestion time was also decreased from several hours to half an hour using the thermal-assisted UV digestion method. This method will not lead to secondary pollution since no oxidant was needed in the thermal-assisted UV photocatalysis digestion process, which made it more compatible with electrochemical detection of TP.展开更多
Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies ...Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.展开更多
Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV-vis diffuse refl...Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV-vis diffuse reflectance spectroscopy confirmed that the dopant ions substitute for some of the lattice zinc ions, and furthermore, that Co〉 and Co〉 ions coexist. The as-prepared ZnO:Co samples have an extended light absorption range compared with pure ZnO and showed highly efficient photocatalytic activity, only requiring 60 rain to decompose -93% of alizarin red dye under visible light irradiation (λ 〉 420 nm), The photophysical mechanism of the visible photocatalytic activity was investigated with the help of surface photovoltage spectroscopy. The results indicated that a strong electronic interaction between the Co and ZnO was present, and that the incorporation of Co promoted the charge separation and enhanced the charge transfer ability and, at the same time, effectively inhibited the recombination of photogenerated charge carriers in ZnO, resulting in high visible light photocatalytic activity.展开更多
基金Supported by the National Natural Science Foundation(61372053)the National High Technology Research and Development Program(2012AA040506)
文摘A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion were conducted using a 365 nm wavelength UV light and Ti O2 particles as the photocatalyst. Sodium tripolyphosphate and sodium glycerophosphate were used as the typical components of TP and the digested samples were then determined by spectrophotometry after phosphomolybdenum blue reaction. The effects of operational parameters such as reaction time and temperature were studied for the digestion of TP and the kinetic analysis of two typical components was performed in this paper. The pseudo-first-order rate constants k of two phosphorus compounds at different temperatures were obtained and the Arrhenius equation was employed to explain the effect of temperature on rate constant k. Compared with the conventional thermal digestion method for TP detection, it was found that the temperature was decreased from 120 °C to 60 °C with same conversion rate and time in this thermal-assisted UV digestion method, which enabled the digestion process work at normal pressure. Compared with the individual ultra-violet(UV) photocatalysis process, the digestion time was also decreased from several hours to half an hour using the thermal-assisted UV digestion method. This method will not lead to secondary pollution since no oxidant was needed in the thermal-assisted UV photocatalysis digestion process, which made it more compatible with electrochemical detection of TP.
基金Project(2010CL04) supported by the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, ChinaProject(K-081025) supported by State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University,China
文摘Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.
基金Acknowledgements We are grateful to the National Basic Research Program of China (973 Program, No. 2007CB613303) for financial support. This work was also supported by the National Natural Science Foundation of China (No. 20873053).
文摘Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV-vis diffuse reflectance spectroscopy confirmed that the dopant ions substitute for some of the lattice zinc ions, and furthermore, that Co〉 and Co〉 ions coexist. The as-prepared ZnO:Co samples have an extended light absorption range compared with pure ZnO and showed highly efficient photocatalytic activity, only requiring 60 rain to decompose -93% of alizarin red dye under visible light irradiation (λ 〉 420 nm), The photophysical mechanism of the visible photocatalytic activity was investigated with the help of surface photovoltage spectroscopy. The results indicated that a strong electronic interaction between the Co and ZnO was present, and that the incorporation of Co promoted the charge separation and enhanced the charge transfer ability and, at the same time, effectively inhibited the recombination of photogenerated charge carriers in ZnO, resulting in high visible light photocatalytic activity.