We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz c...We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz cells. The experiments were performed at 20 ℃ and the THz wave was transmitted vertically to the samples and detected on the other side. The experimental results suggest linear relation for the THz absorption coefficient and the water content of the crude oil emulsions in the observed range. The linear dependence facilitates high-precision measurements of the water content of crude oil. This suggests the potential of THz-TDS in determining the water concentration in crude oil and borehole fluid identification.展开更多
In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering p...In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering profiles regarding creaming destabilization hyperbolic and sigmoid one. Hyperbolic behavior can be described by a second order kinetics, where k_h could be equaled to a rate constant that describes the creaming process and its values would indicate the stability of emulsions. While for the sigmoid BS pattern, kinetics with two terms, is adequate to describe the creaming process in contrast to kinetics previously reported in the literature. The kh value has the same meaning as before, and ks indicates the delaying effect on the creaming rate.展开更多
Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 materi...Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 material was synthesized by hydrolysis and co-condensation of 1,3-bis-(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC) under acidic conditions followed by treatment with 3-aminopropyl-trimethoxysilane in toluene under reflux conditions. This material was characterized using scanning electron microscopy(SEM), diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), thermal gravimetric analysis(TGA) and energy dispersive X-ray analysis(EDAX). The material was effectively used in the removal of crystal violet at ambient temperature and showed high capacity and stability under applied conditions. The efficacy of p H, contact time, adsorbent dose, initial dye concentration, temperature, and isotherm studies and the applicability of pseudo-first, second order and Elovich kinetic models have also been investigated.展开更多
基金sponsored jointly by the National Key Basic Research Program of China(No.2013CB328706)the Special-funded Program on National Key Scientific Instruments and Equipment Development(No.2012YQ140005)+1 种基金the Beijing National Science Foundation(No.4122064)the Science Foundation of China University of Petroleum(Beijing)(No.QZDX-2010-01 and KYJJ2012-06-27)
文摘We measured the water content (0.01% 0.25% w/w) in crude oil emulsions using terahertz time-domain spectroscopy (THz-TDS). To improve the precision and range of the measurements, we used 1 and 10 mm thick quartz cells. The experiments were performed at 20 ℃ and the THz wave was transmitted vertically to the samples and detected on the other side. The experimental results suggest linear relation for the THz absorption coefficient and the water content of the crude oil emulsions in the observed range. The linear dependence facilitates high-precision measurements of the water content of crude oil. This suggests the potential of THz-TDS in determining the water concentration in crude oil and borehole fluid identification.
文摘In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering profiles regarding creaming destabilization hyperbolic and sigmoid one. Hyperbolic behavior can be described by a second order kinetics, where k_h could be equaled to a rate constant that describes the creaming process and its values would indicate the stability of emulsions. While for the sigmoid BS pattern, kinetics with two terms, is adequate to describe the creaming process in contrast to kinetics previously reported in the literature. The kh value has the same meaning as before, and ks indicates the delaying effect on the creaming rate.
基金Supported by the National Science Foundation of Iran
文摘Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 material was synthesized by hydrolysis and co-condensation of 1,3-bis-(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC) under acidic conditions followed by treatment with 3-aminopropyl-trimethoxysilane in toluene under reflux conditions. This material was characterized using scanning electron microscopy(SEM), diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), thermal gravimetric analysis(TGA) and energy dispersive X-ray analysis(EDAX). The material was effectively used in the removal of crystal violet at ambient temperature and showed high capacity and stability under applied conditions. The efficacy of p H, contact time, adsorbent dose, initial dye concentration, temperature, and isotherm studies and the applicability of pseudo-first, second order and Elovich kinetic models have also been investigated.