An experimental investigation associated with the basic fluid mechanics in an axial flow fan is described in this paper. The flow field in the tip region has been studied by laser Doppler anemometer (LDA) and flow vis...An experimental investigation associated with the basic fluid mechanics in an axial flow fan is described in this paper. The flow field in the tip region has been studied by laser Doppler anemometer (LDA) and flow visualization technique. Some experimental data and images are interpreted to understand the complex interactions between the annulus wall boundary layer and the leakage flow. It shows that the vortex inside the blade passage is produced by the separation of annulus wall boundary layer rather than the rolling up of leakage flow.展开更多
Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane...Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane of symmetry by quadratic interpolation of the LDV (Laser Doppler Velocimetry) measurements, for a wall jet-to-boundary layer velocity ratio of 2. The results, which have relevance to flows encountered in powered-lift aircraft operating in ground effect, quantify the structure of the complex ground vortex flow. The analysis of turbulent energy equation terms using the measured data revealed that production by normal and shear stresses are both very important to the turbulent structure of the impact zone of the ground vortex. This is an indication that the modeling of turbulence of a ground vortex requires a good representation of the production by normal stresses which is most important in the collision zone.展开更多
A round jet into a counterflow under different jet-to-current velocity ratios was investigated using large eddy simulation.The results agree well with experimental measurements from laser-Doppler anemometry and laser-...A round jet into a counterflow under different jet-to-current velocity ratios was investigated using large eddy simulation.The results agree well with experimental measurements from laser-Doppler anemometry and laser-induced fluorescence that include velocity and mean concentrations along the centerline and radial direction.Vortex rings appear in the region near the jet exit and large-scale vortex structures still occur near the stagnation point.The flow becomes more chaotic and three-dimensional with the presence of these structures.In particular,their presence near the stagnation point results in large velocity fluctuations that enhance the mixing process and dilution.These fluctuations are described by probability density functions that deviate from Gaussian distribution.The three-dimensional streamlines indicate that the jet not only oscillates in three directions but also rotates about the jet axis and around the vortex.The second and third moments of the velocity or scalar fluctuations identify that the mixing processes are greater in the region before the stagnation point.展开更多
The response speed of the reported Cs_(2)AgBiBr_(6)-based photodetectors exhibits a wide variation ranging from microseconds to nanoseconds,while the reason is still unclear.Apart from the conventional approaches such...The response speed of the reported Cs_(2)AgBiBr_(6)-based photodetectors exhibits a wide variation ranging from microseconds to nanoseconds,while the reason is still unclear.Apart from the conventional approaches such as reducing effective area,new regulating approaches for response speed improvement have rarely been reported.On the other hand,it is generally believed that ultraviolet(UV)light has negative impact on perovskite devices resulting in performance degradation.In this work,we demonstrated that the response speed of the photodetector with FTO/Cs_(2)AgBiBr_(6)/Au structure can be effectively regulated by utilizing UV light-soaking effect without reducing the device area.Particularly,the decay time is efficiently modulated from 30.1μs to 340 ns.In addition,the−3 dB bandwidth of the device is extended from 5 to 20 kHz.It is worth mentioning that the light current is remarkably boosted by 15 times instead of any attenuation.Furthermore,we prove the universality of UV soaking treatment on Cs_(2)AgBiBr_(6)-based photodetectors with other all-inorganic structures,i.e.,FTO/TiO_(2)/Cs_(2)AgBiBr_(6)/Au,FTO/Cs_(2)AgBiBr_(6)/TiO_(2)/Au and FTO/TiO_(2)/Cs_(2)AgBiBr_(6)/CuSCN/Au.Our results demonstrate a new method to improve the response speed and light current of Cs_(2)AgBiBr_(6)-based perovskite all-inorganic photodetectors.展开更多
文摘An experimental investigation associated with the basic fluid mechanics in an axial flow fan is described in this paper. The flow field in the tip region has been studied by laser Doppler anemometer (LDA) and flow visualization technique. Some experimental data and images are interpreted to understand the complex interactions between the annulus wall boundary layer and the leakage flow. It shows that the vortex inside the blade passage is produced by the separation of annulus wall boundary layer rather than the rolling up of leakage flow.
文摘Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane of symmetry by quadratic interpolation of the LDV (Laser Doppler Velocimetry) measurements, for a wall jet-to-boundary layer velocity ratio of 2. The results, which have relevance to flows encountered in powered-lift aircraft operating in ground effect, quantify the structure of the complex ground vortex flow. The analysis of turbulent energy equation terms using the measured data revealed that production by normal and shear stresses are both very important to the turbulent structure of the impact zone of the ground vortex. This is an indication that the modeling of turbulence of a ground vortex requires a good representation of the production by normal stresses which is most important in the collision zone.
基金supported by the National Natural Science Foundation of China (Grant No. 11172218)academic award for excellent Ph.D.Candidates funded by the Ministry of Education of China
文摘A round jet into a counterflow under different jet-to-current velocity ratios was investigated using large eddy simulation.The results agree well with experimental measurements from laser-Doppler anemometry and laser-induced fluorescence that include velocity and mean concentrations along the centerline and radial direction.Vortex rings appear in the region near the jet exit and large-scale vortex structures still occur near the stagnation point.The flow becomes more chaotic and three-dimensional with the presence of these structures.In particular,their presence near the stagnation point results in large velocity fluctuations that enhance the mixing process and dilution.These fluctuations are described by probability density functions that deviate from Gaussian distribution.The three-dimensional streamlines indicate that the jet not only oscillates in three directions but also rotates about the jet axis and around the vortex.The second and third moments of the velocity or scalar fluctuations identify that the mixing processes are greater in the region before the stagnation point.
基金supported by the National Natural Science Foundation of China(51772135 and 52002148)the Ministry of Education of China(6141A02022516)+2 种基金the Fundamental Research Funds for the Central Universities(11619103)Guangdong Basic and Applied Basic Research Foundation(2020A1515011377)the support from China and Germany Postdoctoral Exchange Programthe financial support from Agency for Science,Technology,and Research(A*STAR),Singapore by the AME Individual Research Grants(A1883c0004)。
文摘The response speed of the reported Cs_(2)AgBiBr_(6)-based photodetectors exhibits a wide variation ranging from microseconds to nanoseconds,while the reason is still unclear.Apart from the conventional approaches such as reducing effective area,new regulating approaches for response speed improvement have rarely been reported.On the other hand,it is generally believed that ultraviolet(UV)light has negative impact on perovskite devices resulting in performance degradation.In this work,we demonstrated that the response speed of the photodetector with FTO/Cs_(2)AgBiBr_(6)/Au structure can be effectively regulated by utilizing UV light-soaking effect without reducing the device area.Particularly,the decay time is efficiently modulated from 30.1μs to 340 ns.In addition,the−3 dB bandwidth of the device is extended from 5 to 20 kHz.It is worth mentioning that the light current is remarkably boosted by 15 times instead of any attenuation.Furthermore,we prove the universality of UV soaking treatment on Cs_(2)AgBiBr_(6)-based photodetectors with other all-inorganic structures,i.e.,FTO/TiO_(2)/Cs_(2)AgBiBr_(6)/Au,FTO/Cs_(2)AgBiBr_(6)/TiO_(2)/Au and FTO/TiO_(2)/Cs_(2)AgBiBr_(6)/CuSCN/Au.Our results demonstrate a new method to improve the response speed and light current of Cs_(2)AgBiBr_(6)-based perovskite all-inorganic photodetectors.