Today, micro-system technology and the development of new MEMS (Micro-Electro-Mechanical Systems) are emerging rapidly. In order for this development to become a success in the long run, measurement systems have to en...Today, micro-system technology and the development of new MEMS (Micro-Electro-Mechanical Systems) are emerging rapidly. In order for this development to become a success in the long run, measurement systems have to ensure product quality. Most often, MEMS have to be tested by means of functionality or destructive tests. One reason for this is that there are no suitable systems or sensing probes available which can be used for the measurement of quasi inaccessible features like small holes or cavities. We present a measurement system that could be used for these kinds of measurements. The system combines a fiber optical, miniaturized sensing probe with low-coherence interferometry, so that absolute distance measurements with nanometer accuracy are possible.展开更多
The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results...The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results show that 38 volatile chemical components of RPR are determined, accounting for 95.21% of total contents of volatile chemical components of RPR. The main volatile chemical components of RPR are (Z, Z)-9,12-octadecadienoic acid, n-hexadecanoic acid, 2-hydroxy- benzaldehyde, 1-(2-hydroxy-4-methoxyphenyl)-ethanone, 6,6-dimethyl-bicyclo[3.1.1] heptane-2-methanol, 4,7-dimethyl-benzofuran, 4-(1-methylethenyl)-1-cyclohexene-1-carboxaldehyde, and cyclohexadecane.展开更多
The rRNA genetic locus is found in all prokaryotic organisms, and is highly conservative, although its relatively stable variations are found frequently in different bacteria. The utility of this locus as a taxonomic ...The rRNA genetic locus is found in all prokaryotic organisms, and is highly conservative, although its relatively stable variations are found frequently in different bacteria. The utility of this locus as a taxonomic and phylogenetic tool has been reported widely. This study, aimed at 16S rRNA gene (16S rDNA) and with the help of biomolecular methods, attempted to achieve the goal of rapid identification of common pathogens. In this study, 333 clinical isolated pathogenic bacteria were collected. Two pairs of primers were chosen and labeled with different fluorescent dyes and then used to amplify the genomic DNA extracted from bacteria. The PCR products were then detected by capillary electrophoresis-single strand conformation polymorphism (CE-SSCP). In order to pursue higher resolution and peak-separation effect, a high efficient separating medium, liner polyacrylamidedel (LPA), was put to use in this study. Finally, every bacteria colony generated distinct patterns from each other, which were easily to be used for identification. These results indicated that PCR-CE-SSCP was a rapid identification method for bacterial identification, with the aspects of high efficiency and high precision. Compared with traditional method, this technology is of great utility for clinical use especially for its high sensitivity.展开更多
When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur f...When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.展开更多
In the field of oil well logging, real-time monitoring of the fluid flow parameter provides a scientific basis for oil and gas optimization exploration and increase in reservoir recovery, so a non-intrusive flow test ...In the field of oil well logging, real-time monitoring of the fluid flow parameter provides a scientific basis for oil and gas optimization exploration and increase in reservoir recovery, so a non-intrusive flow test method based on turbulent vibration was proposed. The specific length of the sensor fiber wound tightly around the outer wall of the pipe was connected with the optical fiber gratings at both ends, and the sensor fiber and the optical fiber gratings composed the flow sensing unit. The dynamic pressure was generated by the turbulence when fluid flows through the pipe, and the dynamic pressure resulted in the light phase shift of the sensor fiber. The phase information was demodulated by the fiber optic interferometer technology, time division multiplexing technology, and phase generated carrier modulation and demodulation techniques. The quadratic curve relationship between the phase change and flow rate was found by experimental data analysis, and the experiment confirmed the feasibility of the optical fiber flow test method with non-intrusion and achieved the real-time monitoring of the fluid flow.展开更多
Coronavirus disease 2019(COVID-19),caused by SARS-CoV-2,has rapidly spread and caused a severe global pandemic.Because no specific drugs are available for COVID-19 and few vaccines are available for SARS-CoV-2,accurat...Coronavirus disease 2019(COVID-19),caused by SARS-CoV-2,has rapidly spread and caused a severe global pandemic.Because no specific drugs are available for COVID-19 and few vaccines are available for SARS-CoV-2,accurate and rapid diagnosis of COVID-19 has been the most crucial measure to control this pandemic.Here,we developed a portable bifunctional electrical detector based on graphene fieldeffect transistors for SARS-CoV-2 through either nucleic acid hybridization or antigen-antibody protein interaction,with ultra-low limits of detection of~0.1 and~1 fg mL^(−1) in phosphate buffer saline,respectively.We validated our method by assessment of RNA extracts from the oropharyngeal swabs of ten COVID-19 patients and eight healthy subjects,and the IgM/IgG antibodies from serum specimens of six COVID-19 patients and three healthy subjects.Here we show that the diagnostic results are in excellent agreement with the findings of polymerase chain reaction-based optical methods;they also exhibit rapid detection speed(~10 min for nucleic acid detection and~5 min for immunoassay).Therefore,our assay provides an efficient,accurate tool for high-throughput point-of-care testing.展开更多
As the complexity of nanocircuits continues to increase,developing tests for them becomes more difficult.Failure analysis and the localization of internal test points within nanocircuits are already more difficult tha...As the complexity of nanocircuits continues to increase,developing tests for them becomes more difficult.Failure analysis and the localization of internal test points within nanocircuits are already more difficult than for conventional integrated circuits.In this paper,a new method of testing for faults in nanocircuits is presented that uses single-photon detection to locate failed components(or failed signal lines)by utilizing the infrared photon emission characteristics of circuits.The emitted photons,which can carry information about circuit structure,can aid the understanding of circuit properties and locating faults.In this paper,in order to enhance the strength of emitted photons from circuit components,test vectors are designed for circuits’components or signal lines.These test vectors can cause components to produce signal transitions or switching behaviors according to their positions,thereby increasing the strength of the emitted photons.A multiple-valued decision diagram(MDD),in the form of a directed acrylic graph,is used to produce the test vectors.After an MDD corresponding to a circuit is constructed,the test vectors are generated by searching for specific paths in the MDD of that circuit.Experimental results show that many types of faults such as stuck-at faults,bridging faults,crosstalk faults,and others,can be detected with this method.展开更多
文摘Today, micro-system technology and the development of new MEMS (Micro-Electro-Mechanical Systems) are emerging rapidly. In order for this development to become a success in the long run, measurement systems have to ensure product quality. Most often, MEMS have to be tested by means of functionality or destructive tests. One reason for this is that there are no suitable systems or sensing probes available which can be used for the measurement of quasi inaccessible features like small holes or cavities. We present a measurement system that could be used for these kinds of measurements. The system combines a fiber optical, miniaturized sensing probe with low-coherence interferometry, so that absolute distance measurements with nanometer accuracy are possible.
基金Project(20235020) supported by the National Natural Science Foundation of China
文摘The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results show that 38 volatile chemical components of RPR are determined, accounting for 95.21% of total contents of volatile chemical components of RPR. The main volatile chemical components of RPR are (Z, Z)-9,12-octadecadienoic acid, n-hexadecanoic acid, 2-hydroxy- benzaldehyde, 1-(2-hydroxy-4-methoxyphenyl)-ethanone, 6,6-dimethyl-bicyclo[3.1.1] heptane-2-methanol, 4,7-dimethyl-benzofuran, 4-(1-methylethenyl)-1-cyclohexene-1-carboxaldehyde, and cyclohexadecane.
文摘The rRNA genetic locus is found in all prokaryotic organisms, and is highly conservative, although its relatively stable variations are found frequently in different bacteria. The utility of this locus as a taxonomic and phylogenetic tool has been reported widely. This study, aimed at 16S rRNA gene (16S rDNA) and with the help of biomolecular methods, attempted to achieve the goal of rapid identification of common pathogens. In this study, 333 clinical isolated pathogenic bacteria were collected. Two pairs of primers were chosen and labeled with different fluorescent dyes and then used to amplify the genomic DNA extracted from bacteria. The PCR products were then detected by capillary electrophoresis-single strand conformation polymorphism (CE-SSCP). In order to pursue higher resolution and peak-separation effect, a high efficient separating medium, liner polyacrylamidedel (LPA), was put to use in this study. Finally, every bacteria colony generated distinct patterns from each other, which were easily to be used for identification. These results indicated that PCR-CE-SSCP was a rapid identification method for bacterial identification, with the aspects of high efficiency and high precision. Compared with traditional method, this technology is of great utility for clinical use especially for its high sensitivity.
文摘When interference microscope measures the surface rough of the micromechanical device, as soon as the work distance of interference microscope and the depth of field is shortened, the interference images become slur for the measured object if there has small interference after clear focus. The auto-focusing system is introduced into the interference microscope, the system can obtain high definition interference image rapidly,and can improve the measuring velocity and measuring precision. The system is characterized by auto-focusing range of ±150 μm, auto-focusing precision of ±0.3 μm, auto-focusing time of 4~8 s.
文摘In the field of oil well logging, real-time monitoring of the fluid flow parameter provides a scientific basis for oil and gas optimization exploration and increase in reservoir recovery, so a non-intrusive flow test method based on turbulent vibration was proposed. The specific length of the sensor fiber wound tightly around the outer wall of the pipe was connected with the optical fiber gratings at both ends, and the sensor fiber and the optical fiber gratings composed the flow sensing unit. The dynamic pressure was generated by the turbulence when fluid flows through the pipe, and the dynamic pressure resulted in the light phase shift of the sensor fiber. The phase information was demodulated by the fiber optic interferometer technology, time division multiplexing technology, and phase generated carrier modulation and demodulation techniques. The quadratic curve relationship between the phase change and flow rate was found by experimental data analysis, and the experiment confirmed the feasibility of the optical fiber flow test method with non-intrusion and achieved the real-time monitoring of the fluid flow.
基金the National Key R&D Program of China(2017YFA0204901)the National Natural Science Foundation of China(21727806,21772003 and 21933001)+1 种基金the Tencent Foundation through the XPLORER PRIZE,Guangdong Major Project of Basic and Applied Basic Research(2019B030302007)Beijing National Laboratory for Molecular Sciences(BNLMS201901)。
文摘Coronavirus disease 2019(COVID-19),caused by SARS-CoV-2,has rapidly spread and caused a severe global pandemic.Because no specific drugs are available for COVID-19 and few vaccines are available for SARS-CoV-2,accurate and rapid diagnosis of COVID-19 has been the most crucial measure to control this pandemic.Here,we developed a portable bifunctional electrical detector based on graphene fieldeffect transistors for SARS-CoV-2 through either nucleic acid hybridization or antigen-antibody protein interaction,with ultra-low limits of detection of~0.1 and~1 fg mL^(−1) in phosphate buffer saline,respectively.We validated our method by assessment of RNA extracts from the oropharyngeal swabs of ten COVID-19 patients and eight healthy subjects,and the IgM/IgG antibodies from serum specimens of six COVID-19 patients and three healthy subjects.Here we show that the diagnostic results are in excellent agreement with the findings of polymerase chain reaction-based optical methods;they also exhibit rapid detection speed(~10 min for nucleic acid detection and~5 min for immunoassay).Therefore,our assay provides an efficient,accurate tool for high-throughput point-of-care testing.
基金supported by the National Natural Science Foundation of China(Grant No.61072028)the Project of the Department of Education of Guangdong Province(Grant No.2012KJCX0040)the Guangdong Province and Chinese Ministry of Education Cooperation Project of Industry,Education,and Academy(Grant No.2009B090300339)
文摘As the complexity of nanocircuits continues to increase,developing tests for them becomes more difficult.Failure analysis and the localization of internal test points within nanocircuits are already more difficult than for conventional integrated circuits.In this paper,a new method of testing for faults in nanocircuits is presented that uses single-photon detection to locate failed components(or failed signal lines)by utilizing the infrared photon emission characteristics of circuits.The emitted photons,which can carry information about circuit structure,can aid the understanding of circuit properties and locating faults.In this paper,in order to enhance the strength of emitted photons from circuit components,test vectors are designed for circuits’components or signal lines.These test vectors can cause components to produce signal transitions or switching behaviors according to their positions,thereby increasing the strength of the emitted photons.A multiple-valued decision diagram(MDD),in the form of a directed acrylic graph,is used to produce the test vectors.After an MDD corresponding to a circuit is constructed,the test vectors are generated by searching for specific paths in the MDD of that circuit.Experimental results show that many types of faults such as stuck-at faults,bridging faults,crosstalk faults,and others,can be detected with this method.