factor experiment was used to study the combined effects of temperature, irradiance and salinity on the growth of an HAB species diatom Skeletonema costatum (Grev.) Cleve. The results showed that temperature (12, 19, ...factor experiment was used to study the combined effects of temperature, irradiance and salinity on the growth of an HAB species diatom Skeletonema costatum (Grev.) Cleve. The results showed that temperature (12, 19, 25, 32℃), irradiance ((0.02, 0.08, 0.3, 1.6)×10 16 quanta/(s·cm 2)) and salinity (10, 18, 25, 30, 35) significantly influenced the growth of this species. There were interactive effects between any two of and among all three physical factors on the growth. In the experiment, the most optimal growth condition for S. costatum was temparature of 25℃, salinity of 18-35 and irradiance of 1.6×10 16 quanta/(s·cm 2). The results indicated S. costatum could divide at higher rate and were more likely to bloom under high temperature and high illumination from spring to fall. It was able to distribute widely in ocean and estuary due to its adaptation to a wide range of salinities.展开更多
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integr...Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals(photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.展开更多
文摘factor experiment was used to study the combined effects of temperature, irradiance and salinity on the growth of an HAB species diatom Skeletonema costatum (Grev.) Cleve. The results showed that temperature (12, 19, 25, 32℃), irradiance ((0.02, 0.08, 0.3, 1.6)×10 16 quanta/(s·cm 2)) and salinity (10, 18, 25, 30, 35) significantly influenced the growth of this species. There were interactive effects between any two of and among all three physical factors on the growth. In the experiment, the most optimal growth condition for S. costatum was temparature of 25℃, salinity of 18-35 and irradiance of 1.6×10 16 quanta/(s·cm 2). The results indicated S. costatum could divide at higher rate and were more likely to bloom under high temperature and high illumination from spring to fall. It was able to distribute widely in ocean and estuary due to its adaptation to a wide range of salinities.
基金supported by the National Natural Science Foundation of China(3132200631270285)the Hundred Talents Program of the Chinese Academy of Sciences
文摘Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals(photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.