The key zones of returning farmland to forestland and grassland in Ningxia were studied. By using the "stepwise revised method",the climate productive potential,light and temperature productive potential in the zone...The key zones of returning farmland to forestland and grassland in Ningxia were studied. By using the "stepwise revised method",the climate productive potential,light and temperature productive potential in the zone in recent 50 years were counted. The light and temperature productive potential of corn in Ningxia irrigated area,the central arid zone and the southern mountain area presented the linear increase trend. But when considered the climate productive potentials of light,temperature and water,the numerical value was very low because of the scarce rainfall,and no agriculture without the irrigation. The light and temperature productive potential,climate productive potential of winter wheat in the central arid zone had no significant trend,but the variation range of climate productive potential was very big. The light and temperature productive potential of winter wheat in the southern mountain area had no significant variation trend,and the climate productive potential presented the weak decline trend. It illustrated that the productive of winter wheat was greatly restricted by the water content. By using the meteorological factor data which were simulated by RegCM3-WOFOST/LINGRA coupled model,the future climate productive potentials of winter wheat in the central south of Ningxia was counted. They both presented the weak increase trend. It illustrated that the climate in Ningxia was favorable to improve the yield of winter wheat after returning farmland to forestland.展开更多
There are more people but less land in China,so food safety has always been a most important issue government concerned.With continuous population increase,economic development and environment protection,cropland occu...There are more people but less land in China,so food safety has always been a most important issue government concerned.With continuous population increase,economic development and environment protection,cropland occupation and supplement are unavoidable.It not only leads to the variation of cropland area,but also makes the light-temperature potential productivity per unit area different due to regional climate differentiation,therefore impacts the total potential productivity and food output eventually.So,it is necessary to analyze the climate differentiation between occupation and supplement cropland areas and to study its impact on total potential productivity,which is significant to reasonably develop natural resources and instruct agricultural arrangement.This study firstly discussed the variation and distribution of occupation and supplement croplands in China from 2000 to 2008,then analyzed the climate differentiation between occupation and supplement cropland areas and its effect on light-temperature potential productivity.The results demonstrate:1) From 2000 to 2008,the cropland variation presented occupation in the south and supplement in the north,but overall decreased.Supplement cropland was mainly from ecological reclamation(77.78%) and was mainly distributed in Northeast China and Northwest China with poor climatic and natural conditions.Occupation cropland was mainly used for construction(52.88%) and ecological restoration(44.78%) purposes,and was mainly distributed in the Huang-Huai-Hai Plain,and the middle and lower reaches of the Changjiang(Yangtze) River with better climatic and natural conditions.2) The climate conditions were quite different in supplement and occupation cropland areas.The annual precipitation,annual accumulated temperature and average annual temperature were lower in the supplement cropland area,and its average po-tential productivity per unit was only 62% of occupation cropland area,which was the main reason for the decrease of total potential productivity.3) Cropland occupation and supplement led to the variation of total potential productivity and its spatial distribution.The productivity decreased in the south and increased in the north,but had a net loss of 4.38315×107 t in the whole country.The increase of cropland area was at the cost of reclaiming natural forest and grassland resources,and destroying natural ecological environment,while the decrease of cropland area was mainly due to a lot of cropland occupied by urban-rural construction,which threatened the sustainable use of cropland resources.展开更多
The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The ...The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20℃ with the temperature being set at 20, 24, and 28℃. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.展开更多
基金Supported by the National Natural Science Fund Item (40675071)~~
文摘The key zones of returning farmland to forestland and grassland in Ningxia were studied. By using the "stepwise revised method",the climate productive potential,light and temperature productive potential in the zone in recent 50 years were counted. The light and temperature productive potential of corn in Ningxia irrigated area,the central arid zone and the southern mountain area presented the linear increase trend. But when considered the climate productive potentials of light,temperature and water,the numerical value was very low because of the scarce rainfall,and no agriculture without the irrigation. The light and temperature productive potential,climate productive potential of winter wheat in the central arid zone had no significant trend,but the variation range of climate productive potential was very big. The light and temperature productive potential of winter wheat in the southern mountain area had no significant variation trend,and the climate productive potential presented the weak decline trend. It illustrated that the productive of winter wheat was greatly restricted by the water content. By using the meteorological factor data which were simulated by RegCM3-WOFOST/LINGRA coupled model,the future climate productive potentials of winter wheat in the central south of Ningxia was counted. They both presented the weak increase trend. It illustrated that the climate in Ningxia was favorable to improve the yield of winter wheat after returning farmland to forestland.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No KSCX1-YW-09-01)
文摘There are more people but less land in China,so food safety has always been a most important issue government concerned.With continuous population increase,economic development and environment protection,cropland occupation and supplement are unavoidable.It not only leads to the variation of cropland area,but also makes the light-temperature potential productivity per unit area different due to regional climate differentiation,therefore impacts the total potential productivity and food output eventually.So,it is necessary to analyze the climate differentiation between occupation and supplement cropland areas and to study its impact on total potential productivity,which is significant to reasonably develop natural resources and instruct agricultural arrangement.This study firstly discussed the variation and distribution of occupation and supplement croplands in China from 2000 to 2008,then analyzed the climate differentiation between occupation and supplement cropland areas and its effect on light-temperature potential productivity.The results demonstrate:1) From 2000 to 2008,the cropland variation presented occupation in the south and supplement in the north,but overall decreased.Supplement cropland was mainly from ecological reclamation(77.78%) and was mainly distributed in Northeast China and Northwest China with poor climatic and natural conditions.Occupation cropland was mainly used for construction(52.88%) and ecological restoration(44.78%) purposes,and was mainly distributed in the Huang-Huai-Hai Plain,and the middle and lower reaches of the Changjiang(Yangtze) River with better climatic and natural conditions.2) The climate conditions were quite different in supplement and occupation cropland areas.The annual precipitation,annual accumulated temperature and average annual temperature were lower in the supplement cropland area,and its average po-tential productivity per unit was only 62% of occupation cropland area,which was the main reason for the decrease of total potential productivity.3) Cropland occupation and supplement led to the variation of total potential productivity and its spatial distribution.The productivity decreased in the south and increased in the north,but had a net loss of 4.38315×107 t in the whole country.The increase of cropland area was at the cost of reclaiming natural forest and grassland resources,and destroying natural ecological environment,while the decrease of cropland area was mainly due to a lot of cropland occupied by urban-rural construction,which threatened the sustainable use of cropland resources.
基金supported by the Scientific Research Foundation of Ji’nan University (No. 50624068)the Fundamental Research Funds for the Central Universities (No. 11609318)the Project of Science and Technology Development Plan, Science and Technology Bureau of Hengyang (2010KJ25)
文摘The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20℃ with the temperature being set at 20, 24, and 28℃. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.