Two narrowly-distributed poly(N-isopropylacrylamide)(PNIPAM) samples were prepared via atom transfer radical polymerization (ATRP) with a novel dansyl functionalized initiator. The other end of the PNIPAM was function...Two narrowly-distributed poly(N-isopropylacrylamide)(PNIPAM) samples were prepared via atom transfer radical polymerization (ATRP) with a novel dansyl functionalized initiator. The other end of the PNIPAM was functionalized by dabcyl group via click reaction. From the static fluorescence measurements, the fluorescence intensity of dansyl group and energy transfer efficiency between dansyl and dabcyl groups increased when the temperature increased from 36 °C to 45 °C, indicating that the microenvironment surrounding dansyl became hydrophobic and the distance between dansyl and dabcyl decreased. The kinetics of the conformational change of the dye-labeled PNIPAM was studied by a home-made laser-induced temperature jump device with fluorescent measurement. Our results revealed that the characteristic transition time was 3.8 and 5.8 ms for PNIPAM with degrees of polymerization of 85 and 142, respectively, indicating that the characteristic transition time was related to the chain length. Besides, characteristic transition time for the change of the energy transfer efficiency was 2.9 ms for PNIPAM with the degree of polymerization of 85, suggesting that the energy transfer efficiency change was faster than the fluorescence intensity change of dansyl group.展开更多
The fast phase-transitional process of ploy(N-isopropylacrylamide) (PNIPAM) in deuterated solution was studied by laser induced temperature jump technique combined with time-resolved mid-infrared absorbance differ...The fast phase-transitional process of ploy(N-isopropylacrylamide) (PNIPAM) in deuterated solution was studied by laser induced temperature jump technique combined with time-resolved mid-infrared absorbance difference spectroscopy on nanosecond level. The multi-peaks of amide I'band of PNIPAM among the energy range of 1565-1700 cm^-1 was experimentally resolved to three groups (i, ii, iii) for the first time, while the distinct threestage procedure in the phase transitional process of long-chain PNIPAM was observed firstly too. Furthermore, proper assignments were also made for the three group peaks in amide I'band and the three steps in the kinetics process of long-chain PNIPAM.展开更多
The study of the hydrogen evolution reaction(HER)aimed to reach a deeper understanding of the parameters that control the rate of this reaction is of great importance given the technical relevance of hydrogen producti...The study of the hydrogen evolution reaction(HER)aimed to reach a deeper understanding of the parameters that control the rate of this reaction is of great importance given the technical relevance of hydrogen production as an energy vector in the so-called hydrogen economy.In previous works,laser-induced temperature jump(LITJ)experiments on Pt(111)modified with Ni(OH)_(2)in alkaline media have revealed the importance of the interfacial electric field in the rate of the HER.It was hypothesised that small amounts of Ni(OH)_(2)cause a decrease of the electric field because of a negative shift of the pzfc toward the onset of the hydrogen evolution.In this work,to test the validity of this hypothesis,the study has been extended to Pt(111)surfaces modified with Fe(OH)_(2).The modified surfaces have been studied voltammetrically,and the voltammetric charges have been analysed.The voltammograms show a peak in the hydrogen evolution region that suggest the transformation in the adlayer from Fe(II)to Fe(0).In agreement with the coulometric analysis,the voltammetric features in the OH adsorption region would be related with the oxidation to the+3 valence state.The results obtained with LITJ method reflect the existence of a strong interaction of the Fe oxophilic species with the water molecules,shifting the potential of maximum entropy away from the onset of the HER.Hence,the most catalytic surface is the one with the lowest Fe coverage.展开更多
An Nd:YAG single pulse nanosecond laser of 532 nm wavelength with an 8 ns pulse width was projected on the soil samples collected from the campus of Bengbu College under 1 standard atmospheric pressure. Laser-induced ...An Nd:YAG single pulse nanosecond laser of 532 nm wavelength with an 8 ns pulse width was projected on the soil samples collected from the campus of Bengbu College under 1 standard atmospheric pressure. Laser-induced breakdown spectroscopy at different sample temperatures was achieved. The intensity and signal-to-noise ratio (SNR) changes of different characteristic spectral lines could be analyzed when the sample temperature changes.The evolution of plasma electron temperature and electron density with the sample temperature was analyzed through Boltzmann oblique line method and Stark broadening method.The cause of the radiation enhancement of laser-induced metal plasma was discussed. Experimental results demonstrated that the spectral intensity, SNR, the electron temperature and electron density of plasma are positively related to the sample temperature, and reach saturation at 100℃.展开更多
The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays,lasers and optical communications.In contrast to isolated molecule,there are var...The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays,lasers and optical communications.In contrast to isolated molecule,there are various weak intermolecular interactions in organic solids that sometimes have a large impact on the excited-state properties and energy dissipation pathways,resulting in strong fluorescence/phosphorescence.It is increasingly necessary to reveal the luminescence mechanism of organic solids.Here,we briefly review how intermolecular interactions induce strong normal fluorescence,thermally activate delayed fluorescence and room-temperature phosphorescence in organic solids by examining changes in geometry,electronic structures,electron-vibration coupling and energy dissipation dynamics of the excited states from isolated to aggregated molecules.We hope that the review will contribute to an in-depth understanding of the excited state properties of organic solids and to the design of excellent solid-state light-emitting materials.展开更多
Efficient room temperature phosphorescence (RTP) is rarely observed in pure organic luminogens. However, we have newly observed that benzil and its derivatives are nonluminescent in solvents and thin layer chromatogra...Efficient room temperature phosphorescence (RTP) is rarely observed in pure organic luminogens. However, we have newly observed that benzil and its derivatives are nonluminescent in solvents and thin layer chromatography (TLC) plates, but become highly phosphorescent in crystal state at room temperature, exhibiting typical crystallization-induced phosphorescence (CIP) characteristics. The CIP phenomenon is ascribed to the restriction of intramolecular rotations in crystals owing to effective intermolecular interactions. Such intermolecular interactions greatly rigidify the molecular conformation and significantly decrease the nonradiative deactivation channels of the triplet excitons, thus giving boosted phosphorescent emission at room temperature.展开更多
Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the devel...Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the development of such materials remains in its infancy,underscoring the importance of exploiting novel and efficient light-responsive RTP molecules.In this work,three phenothiazine derivatives of TPA-PTZ,TPA-2PTZ,and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction.By embedding these molecules as RTP guests into polymethyl methacrylate(PMMA)matrix,photo-induced RTP properties were realized.Upon sustained UV irradiation,there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%.Remarkably,these materials exhibit superior alongside robust light and thermal stability,maintaining high phosphorescence intensity even after prolonged UV exposure(irradiation for>200 s by a 365 nm UV lamp with the power of 500μW·cm-2)or at higher temperature up to 75℃.The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption,anti-counterfeiting,and advanced optical materials.展开更多
基金supported by the National Natural Science Foundation of China(No.21674107 and No.21274140)the Fundamental Research Funds for the Central Universities(No.WK2340000066)
文摘Two narrowly-distributed poly(N-isopropylacrylamide)(PNIPAM) samples were prepared via atom transfer radical polymerization (ATRP) with a novel dansyl functionalized initiator. The other end of the PNIPAM was functionalized by dabcyl group via click reaction. From the static fluorescence measurements, the fluorescence intensity of dansyl group and energy transfer efficiency between dansyl and dabcyl groups increased when the temperature increased from 36 °C to 45 °C, indicating that the microenvironment surrounding dansyl became hydrophobic and the distance between dansyl and dabcyl decreased. The kinetics of the conformational change of the dye-labeled PNIPAM was studied by a home-made laser-induced temperature jump device with fluorescent measurement. Our results revealed that the characteristic transition time was 3.8 and 5.8 ms for PNIPAM with degrees of polymerization of 85 and 142, respectively, indicating that the characteristic transition time was related to the chain length. Besides, characteristic transition time for the change of the energy transfer efficiency was 2.9 ms for PNIPAM with the degree of polymerization of 85, suggesting that the energy transfer efficiency change was faster than the fluorescence intensity change of dansyl group.
基金This work was supported by the National Natural Science Foundation of China (No.20673107), the National Key Basic Research Special Foundation of China (No.2007CB815203), and the Knowledge Innovation Foundation of the Chinese Academy of Science (No.KJCX2-SW-H08).
文摘The fast phase-transitional process of ploy(N-isopropylacrylamide) (PNIPAM) in deuterated solution was studied by laser induced temperature jump technique combined with time-resolved mid-infrared absorbance difference spectroscopy on nanosecond level. The multi-peaks of amide I'band of PNIPAM among the energy range of 1565-1700 cm^-1 was experimentally resolved to three groups (i, ii, iii) for the first time, while the distinct threestage procedure in the phase transitional process of long-chain PNIPAM was observed firstly too. Furthermore, proper assignments were also made for the three group peaks in amide I'band and the three steps in the kinetics process of long-chain PNIPAM.
基金funded by Ministerio de Ciencia e Innovación (Spain) (PID2019-105653GB-I00)Generalitat Valenciana (Spain) (PROMETEO/2020/063)。
文摘The study of the hydrogen evolution reaction(HER)aimed to reach a deeper understanding of the parameters that control the rate of this reaction is of great importance given the technical relevance of hydrogen production as an energy vector in the so-called hydrogen economy.In previous works,laser-induced temperature jump(LITJ)experiments on Pt(111)modified with Ni(OH)_(2)in alkaline media have revealed the importance of the interfacial electric field in the rate of the HER.It was hypothesised that small amounts of Ni(OH)_(2)cause a decrease of the electric field because of a negative shift of the pzfc toward the onset of the hydrogen evolution.In this work,to test the validity of this hypothesis,the study has been extended to Pt(111)surfaces modified with Fe(OH)_(2).The modified surfaces have been studied voltammetrically,and the voltammetric charges have been analysed.The voltammograms show a peak in the hydrogen evolution region that suggest the transformation in the adlayer from Fe(II)to Fe(0).In agreement with the coulometric analysis,the voltammetric features in the OH adsorption region would be related with the oxidation to the+3 valence state.The results obtained with LITJ method reflect the existence of a strong interaction of the Fe oxophilic species with the water molecules,shifting the potential of maximum entropy away from the onset of the HER.Hence,the most catalytic surface is the one with the lowest Fe coverage.
基金supported by the National Natural Science Foundation of China(No.11604003)Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology(OMST201703)the Natural Science Foundations of Bengbu College(No.2017ZR11zd)
文摘An Nd:YAG single pulse nanosecond laser of 532 nm wavelength with an 8 ns pulse width was projected on the soil samples collected from the campus of Bengbu College under 1 standard atmospheric pressure. Laser-induced breakdown spectroscopy at different sample temperatures was achieved. The intensity and signal-to-noise ratio (SNR) changes of different characteristic spectral lines could be analyzed when the sample temperature changes.The evolution of plasma electron temperature and electron density with the sample temperature was analyzed through Boltzmann oblique line method and Stark broadening method.The cause of the radiation enhancement of laser-induced metal plasma was discussed. Experimental results demonstrated that the spectral intensity, SNR, the electron temperature and electron density of plasma are positively related to the sample temperature, and reach saturation at 100℃.
基金supported by the National Natural Science Foundation of China(No.21973099)。
文摘The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays,lasers and optical communications.In contrast to isolated molecule,there are various weak intermolecular interactions in organic solids that sometimes have a large impact on the excited-state properties and energy dissipation pathways,resulting in strong fluorescence/phosphorescence.It is increasingly necessary to reveal the luminescence mechanism of organic solids.Here,we briefly review how intermolecular interactions induce strong normal fluorescence,thermally activate delayed fluorescence and room-temperature phosphorescence in organic solids by examining changes in geometry,electronic structures,electron-vibration coupling and energy dissipation dynamics of the excited states from isolated to aggregated molecules.We hope that the review will contribute to an in-depth understanding of the excited state properties of organic solids and to the design of excellent solid-state light-emitting materials.
基金the National Natural Science Foundations of China (21104044)the National Basic Research Program of China (973 Program, 2013CB834701 and 2013CB834704)+1 种基金the Ph.D. Programs Foundation of Ministry of Education of China (20110073120040)the Shanghai Leading Academic Discipline Project (B202). W.Z.Y. thanks the Start-up Foundation and SMC-Chenxing Young Scholar Pro- gram of Shanghai Jiao Tong University.
文摘Efficient room temperature phosphorescence (RTP) is rarely observed in pure organic luminogens. However, we have newly observed that benzil and its derivatives are nonluminescent in solvents and thin layer chromatography (TLC) plates, but become highly phosphorescent in crystal state at room temperature, exhibiting typical crystallization-induced phosphorescence (CIP) characteristics. The CIP phenomenon is ascribed to the restriction of intramolecular rotations in crystals owing to effective intermolecular interactions. Such intermolecular interactions greatly rigidify the molecular conformation and significantly decrease the nonradiative deactivation channels of the triplet excitons, thus giving boosted phosphorescent emission at room temperature.
文摘Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the development of such materials remains in its infancy,underscoring the importance of exploiting novel and efficient light-responsive RTP molecules.In this work,three phenothiazine derivatives of TPA-PTZ,TPA-2PTZ,and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction.By embedding these molecules as RTP guests into polymethyl methacrylate(PMMA)matrix,photo-induced RTP properties were realized.Upon sustained UV irradiation,there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%.Remarkably,these materials exhibit superior alongside robust light and thermal stability,maintaining high phosphorescence intensity even after prolonged UV exposure(irradiation for>200 s by a 365 nm UV lamp with the power of 500μW·cm-2)or at higher temperature up to 75℃.The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption,anti-counterfeiting,and advanced optical materials.