The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix ...The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix organic electroluminescent display technology. A novel method to improve display contrast ratio is presented. Finally several 3G phone set prototypes with OLED display panels are given as well as the market forecast.展开更多
In this paper, we conduct theoretical research on design and implementation on wind and light complementary LED lighting controller based on the novel base board packaging technology. LED, as a kind of device can conv...In this paper, we conduct theoretical research on design and implementation on wind and light complementary LED lighting controller based on the novel base board packaging technology. LED, as a kind of device can convert electric power into visible light directly the homomorphism of semiconductor devices, with high efficiency and small energy consumption, good light quality, use safety, long service life, green environmental protection, flexible control as this is common lamps and lanterns is incomparable advantage. Therefore, it is considered to be 21 century of a new generation of lighting source. Based on the superiority of LED, it is widely applied in many fields of lighting. To enhance the traditional solar based pure LED system, we enhance it with the combination of the wind power and the optimized controller that holds specific meaning.展开更多
A new type of compact terahertz (THz) radiation source using free electron laser (FEL) is discussed in this paper.The concept machine consists of an independently tunable cell thermionic RF gun (ITC-RF Gun),an acceler...A new type of compact terahertz (THz) radiation source using free electron laser (FEL) is discussed in this paper.The concept machine consists of an independently tunable cell thermionic RF gun (ITC-RF Gun),an accelerating structure with symmetry RF-incoupler and a coaxial load RF-outcoupler,an undulator combined with an optical resonance cavity of hole-coupling mode.Withoutα-magnet and other bunch compressors,the size of this machine is decreased.The conceptual design and numerical simulation are presented.展开更多
Exploration of new infrared(IR) nonlinear optical(NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formida...Exploration of new infrared(IR) nonlinear optical(NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formidable challenge is to balance the contradiction between wide band gaps and large second harmonic generation(SHG) effects in IR NLO materials. In the present work, we proposed new kinds of NLO active units, d^0 transition metal fluorooxofunctional groups for designing mid-IR NLO materials. By studying a series of d^0 transition metal oxyfluorides(TMOFs),the influences of fluorooxo-functional groups with different d^0 configuration cations on the band gap and SHG responses were explored. The results reveal that the fluorooxo-functional groups with different d^0 configuration cations can enlarge band gaps in mid-IR NLO materials. The first-principles calculations demonstrate that the nine alkali/alkaline earth metals d^0 TMOFs exhibit wide band gaps(all the band gaps >3.0 e V), large birefringence Δn(> 0.07), and two W/Mo TMOFs also exhibit large SHG responses. Moreover, by comparing with other fluorooxo-functional groups, it is found that introducing fluorine into building units is an effective way to enhance optical performance. These d^0 TMOFs with superior fluorooxo-functional groups represent a new exploration family of the mid-IR region, which sheds light on the design of mid-IR NLO materials possessing large band gap.展开更多
An ultra-wide and flat optical frequency comb(OFC) generation scheme using multiple continuous wave(CW) light sources based on electro-absorption modulator(EAM) and frequency modulator(FM) is proposed. In the scheme, ...An ultra-wide and flat optical frequency comb(OFC) generation scheme using multiple continuous wave(CW) light sources based on electro-absorption modulator(EAM) and frequency modulator(FM) is proposed. In the scheme, each CW light source is broadened and modulated by the first EAM and FM, respectively. The second EAM is introduced to flatten the ultra-wide OFC lines. By setting the wavelength spacing of light sources equal to the bandwidth of sub-OFC, an ultra-wide OFC can be obtained. Principle analysis and simulation for the scheme are performed. The results show that in the case of a single light source, a tunable and flat OFC is obtained. With the increase of light sources, the bandwidth of the generated ultra-wide OFC expands rapidly. In the case of 28 light sources, a 22 GHz ultra-wide OFC with bandwidth of 16.52 THz can be generated.展开更多
The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the opt...The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.展开更多
文摘The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix organic electroluminescent display technology. A novel method to improve display contrast ratio is presented. Finally several 3G phone set prototypes with OLED display panels are given as well as the market forecast.
文摘In this paper, we conduct theoretical research on design and implementation on wind and light complementary LED lighting controller based on the novel base board packaging technology. LED, as a kind of device can convert electric power into visible light directly the homomorphism of semiconductor devices, with high efficiency and small energy consumption, good light quality, use safety, long service life, green environmental protection, flexible control as this is common lamps and lanterns is incomparable advantage. Therefore, it is considered to be 21 century of a new generation of lighting source. Based on the superiority of LED, it is widely applied in many fields of lighting. To enhance the traditional solar based pure LED system, we enhance it with the combination of the wind power and the optimized controller that holds specific meaning.
文摘A new type of compact terahertz (THz) radiation source using free electron laser (FEL) is discussed in this paper.The concept machine consists of an independently tunable cell thermionic RF gun (ITC-RF Gun),an accelerating structure with symmetry RF-incoupler and a coaxial load RF-outcoupler,an undulator combined with an optical resonance cavity of hole-coupling mode.Withoutα-magnet and other bunch compressors,the size of this machine is decreased.The conceptual design and numerical simulation are presented.
基金supported by Tianshan Innovation Team Program (2018D14001)the National Natural Science Foundation of China (51922014 and 11774414)+2 种基金Shanghai Cooperation Organization Science and Technology Partnership Program (2017E01013)Xinjiang Program of Introducing High-Level Talents, Fujian Institute of Innovation, Chinese Academy of Sciences (FJCXY18010202)the Western Light Foundation of CAS (2017-XBQNXZ-B-006 and 2016QNXZ-B-9)
文摘Exploration of new infrared(IR) nonlinear optical(NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formidable challenge is to balance the contradiction between wide band gaps and large second harmonic generation(SHG) effects in IR NLO materials. In the present work, we proposed new kinds of NLO active units, d^0 transition metal fluorooxofunctional groups for designing mid-IR NLO materials. By studying a series of d^0 transition metal oxyfluorides(TMOFs),the influences of fluorooxo-functional groups with different d^0 configuration cations on the band gap and SHG responses were explored. The results reveal that the fluorooxo-functional groups with different d^0 configuration cations can enlarge band gaps in mid-IR NLO materials. The first-principles calculations demonstrate that the nine alkali/alkaline earth metals d^0 TMOFs exhibit wide band gaps(all the band gaps >3.0 e V), large birefringence Δn(> 0.07), and two W/Mo TMOFs also exhibit large SHG responses. Moreover, by comparing with other fluorooxo-functional groups, it is found that introducing fluorine into building units is an effective way to enhance optical performance. These d^0 TMOFs with superior fluorooxo-functional groups represent a new exploration family of the mid-IR region, which sheds light on the design of mid-IR NLO materials possessing large band gap.
基金supported by the Specialized Research Fund for the National Natural Science Foundation of China(Nos.61275067 and 61302026)the Provincial Natural Foundation of Jiangsu(Nos.BK2012830 and BK2012432)
文摘An ultra-wide and flat optical frequency comb(OFC) generation scheme using multiple continuous wave(CW) light sources based on electro-absorption modulator(EAM) and frequency modulator(FM) is proposed. In the scheme, each CW light source is broadened and modulated by the first EAM and FM, respectively. The second EAM is introduced to flatten the ultra-wide OFC lines. By setting the wavelength spacing of light sources equal to the bandwidth of sub-OFC, an ultra-wide OFC can be obtained. Principle analysis and simulation for the scheme are performed. The results show that in the case of a single light source, a tunable and flat OFC is obtained. With the increase of light sources, the bandwidth of the generated ultra-wide OFC expands rapidly. In the case of 28 light sources, a 22 GHz ultra-wide OFC with bandwidth of 16.52 THz can be generated.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51275373) and the Key Project of National Natural Science Foundation of China (Grant No. 50830230).
文摘The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.