The photochemical reactions of active methylene containing such as fluorene, diphenymethane(DPM), di(1 naphthyl)methane (DNM) and triphenymethane(TPM) with N bromosuccinimide (NBS) were investigated The results show t...The photochemical reactions of active methylene containing such as fluorene, diphenymethane(DPM), di(1 naphthyl)methane (DNM) and triphenymethane(TPM) with N bromosuccinimide (NBS) were investigated The results show that monobromo derivatives can be selectively obtained when the ratio of NBS to a substrate is 1 1∶1 and that the reactivities of the substrates toward photochemical reaction are DNM > Fluorene> DPM > TPM The reaction mechanisms were also展开更多
In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degr...In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3(BOB-3),but the order of their photocatalytic activities in rhodamine B(RhB) degradation were reversed. Electrochemical Mott–Schottky and zeta-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge,leading to superior photocatalytic activity in salicylic acid degradation under visible light. However,BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors,and will help in designing highly active photocatalysts for environmental remediation.展开更多
Ag3PO4 powders were prepared through a precipitation reaction between AgNO3 and precipitating agent solutions that were prepared by adjusting the amount of H3PO4 in the Na3PO4 solutions. The Ag3PO4 powders prepared fr...Ag3PO4 powders were prepared through a precipitation reaction between AgNO3 and precipitating agent solutions that were prepared by adjusting the amount of H3PO4 in the Na3PO4 solutions. The Ag3PO4 powders prepared from the precipitation solution with a pH of 6 showed the highest photocatalytic activity for decolorizing the methylene blue and rhodamine B dyes. These Ag3PO4 powders were further modified by the addition of KBr solutions to obtain AgBr/Ag3PO4 powders and these photocatalysts can decolorize the anionic dyes as reactive orange and methyl orange. The reactive species involved in the photocatalytic degradation process were evaluated for their inhibitory activity using the appropriate scavengers. After photocatalysis, mass spectrometry confirmed that the dyes were degraded to smaller molecules. The ecotoxicities of the dye solutions before and after treatment were evaluated by studying their ability to inhibit the growth of the bioindicator Chlorella vulgaris.展开更多
Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hyb...Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hybrid perovskite methylammonium lead bromide(MAPbBr_(3))nanocrystals stabilized in aqueous HBr solution can achieve simultaneous aromatic bromination and hydrogen evolution using HBr as the bromine source under visible light irradiation.By hybridizing MAPbBr_(3) with Pt/Ta_(2)O_(5) and poly(3,4‐ethylenedioxythiophene)polystyrene sulfonate as electron‐and hole‐transporting motifs,aromatic bromides were achieved from aromatic compounds with high yield(up to 99%)and selectivity(up to 99%)with the addition of N,N‐dimethylformamide or its analogs.The mechanistic studies revealed that the bromination proceeds via an electrophilic attack pathway and that HOBr may be the key intermediate in the bromination reaction.展开更多
A spectrophotometric method for the determination of ruthenium(III) is described, based on its catalytic effect on the oxidation reaction of dimethyl yellow (DMY) with potassium bromate in an acid solution medium and ...A spectrophotometric method for the determination of ruthenium(III) is described, based on its catalytic effect on the oxidation reaction of dimethyl yellow (DMY) with potassium bromate in an acid solution medium and in the presence of an OP emulsifier (p-iso-octyl phenoxy polyethoxy ethanol) at 100 °C. This reaction was followed spectrophotometrically by measuring the decrease in the absorbance at 530 nm of the catalytic reaction of DMY. The calibration curve for the recommended method was linear in the concentration range over 0.0–1.0 μg/L and the detection limit of the method for Ru(III) was 0.01 μg/L. The method is highly sensitive, selective and very stable and has been successfully applied for the determination of trace amounts of ruthenium in some ores and metallurgy products with the relative standard deviations (RSD) over 1.6%–2.8% and a recovery over 98.7%–104.0%.展开更多
The photodissociation dynamics of Br-C bond cleavage for BrCN in the wavelength region from 225 nm to 260 nm has been studied by our homebuilt time-slice velocity-map imaging setup.The images for both of the ground st...The photodissociation dynamics of Br-C bond cleavage for BrCN in the wavelength region from 225 nm to 260 nm has been studied by our homebuilt time-slice velocity-map imaging setup.The images for both of the ground state Br(^(2)P_(3/2))and spin-orbit excited Br^(*)(^(2)P_(1/2))channels are obtained at several photodissociation wavelengths.From the analysis of the translational energy release spectra,the detailed vibrational and rotational distributions of CN products have been measured for both of the Br and Br^(*) channels.It is found that the internal excitation of the CN products for the Br^(*) channel is colder than that for the Br channel.The most populated vibrational levels of the CN products are v=0 and 1 for the Br and Br^(*) channels,respectively.For the Br channel,the photodissociation dynamics at longer wavelengths are found to be different from those at shorter wavelengths,as revealed by their dramatically different vibrational and rotational excitations of the CN products.展开更多
In this manuscript,Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites was fabricated via an ultrasonic-assisted process.The activity of the as-obtained Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites for photocatalytic CO_(2) ...In this manuscript,Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites was fabricated via an ultrasonic-assisted process.The activity of the as-obtained Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites for photocatalytic CO_(2) reduction was studied under visible light.The as-obtained Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites show a superior activity for photocatalytic CO_(2) reduction to produce CH4 and CO,with an optimum activity achieved over 0.5 Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6).The obvious superior activity observed over Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites as compared with bare Cs_(2)AgBiBr_(6) and bare Bi_(2)WO_(6) as well as a mechanical mixture of Cs_(2)AgBiBr_(6) and Bi_(2)WO_(6) can be owe to the fabrication of an efficient S-scheme heterojunction,which accelerates the separation of the photogenerated charge carriers in Cs_(2)AgBiBr_(6) and Bi_(2)WO_(6) without sacrificing the high redox capability of Cs_(2)AgBiBr_(6) and Bi_(2)WO_(6).This work demonstrates that the coupling of two photocatalytic materials with staggered band alignment to form an S-scheme heterojunction is an effective strategy to develop efficient photocatalytic systems and also highlights the promising role of using lead free perovskites in photocatalysis.展开更多
A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solu...A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solution medium at 100℃. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 625 nm for the catalytic reaction of methyl green. The calibration curve for the recommended reaction-rate method was linear in the concentration range over 0.00-0.80 μg/L and the detection limit of the method for Ru (III) is 0.006 μg/L. Almost no foreign ions interfered in the determination at less than 25-fold concentration of Ru (Ⅲ). The method is highly sensitive, more selective and very stable, and has been successfully applied for the determination of trace ruthenium in some ores and metallurgy products.展开更多
The theoretical calculation and spectroscopic experiments indicate a kind of triangular three bonding supramolecular complexes CBr4…X^-…-H-C, which consist of carbon tetrabromide, halide, and protic solvent molecule...The theoretical calculation and spectroscopic experiments indicate a kind of triangular three bonding supramolecular complexes CBr4…X^-…-H-C, which consist of carbon tetrabromide, halide, and protic solvent molecule (referring to dichloromethane, chloroform and acetonitrile), can be formed in solution. The strength of halogen and hydrogen bonds in the triangular complexes using halide as common acceptor obeys the order of iodide〉bromide〉chloride. The halogen and hydrogen bonds work weak-cooperatively. Charge transfer bands of halogen bonding complexes between CBra and halide are observed in UV-Vis absorption spectroscopy in three solvents, and then the stoichiometry of 1:1, formation constants K and molar extinction coefficients ε of the halogen bonding complexes are obtained by Benesi-Hildebrand method. The K and ε show a dependence on the solvent dielectric constant and, on the whole, obey an order of iodide〉bromide〉chloride in the same solvents. Furthermore, the C-H vibrational frequencies of solvent molecules vary obviously with the addition of halide, which indicates the C-H…X- interaction. The experimental data indicate that the halogen bond and hydrogen bond coexist by sharing a common halide acceptor as predicted by calculation.展开更多
It is investigated the interaction of Ge(IV) with bis(2,3,4-trigodroksifenolazo) benzidine (R) in the presence of KSAS (cationic surface active substances)-CPCl (cetylpyridinium chloride), CPBr (cetylpyridi...It is investigated the interaction of Ge(IV) with bis(2,3,4-trigodroksifenolazo) benzidine (R) in the presence of KSAS (cationic surface active substances)-CPCl (cetylpyridinium chloride), CPBr (cetylpyridinium bromide) and CTMABr (cetyltrimethylammonium bromide). It is studied the effect pH, time on the formation of ternary complexes. It is determinated of molar absorption coefficients and stability constants of germanium. Binary (Ge-R) and triple (Ge-R-CPCI, Ge-R-CPBr, Ge-R-CTMaBr) complex form at pH 4 and pH 1, respectively. The composition proportion of binar system is 1:2 and the composition proportion triple complex is 1:1:2. The concentration interval of germanium which obeying beer low in the Ge-R 0.12-2.92 mkq/mL, in the Ge-R-CPCI is 0.04-1.46 mkq/mL, in the Ge-R-CPBr is 0.00-1.00 mkq/mL and in the Ge-R-CTMaBr is 0.00-1.00 mkq/mL. Molar absorbtivities of complexes are 45,000, 57,000, 59,000 and 60,000, respectively. The effect of interfering ions and masking agents has been learned. Stability constants of complexes have been determined: lgKl = 7.21 + 0.06 (Ge-R),' lgK1 = 12.08 _+ 0.05 (Ge-R-CPCI), lgK1 = 12.12 + 0.07 (Ge-R-CPBr) and lgK1 = 12.85 + 0.06 (Ge-R-CTMaBr). It is developed highly selective method of photometric determination of trace amounts of Ge(IV) in petroleum coke.展开更多
文摘The photochemical reactions of active methylene containing such as fluorene, diphenymethane(DPM), di(1 naphthyl)methane (DNM) and triphenymethane(TPM) with N bromosuccinimide (NBS) were investigated The results show that monobromo derivatives can be selectively obtained when the ratio of NBS to a substrate is 1 1∶1 and that the reactivities of the substrates toward photochemical reaction are DNM > Fluorene> DPM > TPM The reaction mechanisms were also
基金supported by the National Natural Science Funds for Distinguished Young Scholars(21425728)the National Natural Science Foundation of China(21173093+4 种基金211770482127308821477044)the Key Project of Natural Science Foundation of Hubei Province(2013CFA114)the the Fundamental Research Funds for the Central Universities(CCNU14Z01001 CCNU14KFY002)~~
文摘In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3(BOB-3),but the order of their photocatalytic activities in rhodamine B(RhB) degradation were reversed. Electrochemical Mott–Schottky and zeta-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge,leading to superior photocatalytic activity in salicylic acid degradation under visible light. However,BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors,and will help in designing highly active photocatalysts for environmental remediation.
基金supported from Prince of Songkla University under contract number SCI570276Sthe Center of Excellence for Innovation in Chemistry(PERCH-CIC), Office of the Higher Education Commission, Ministry of Education
文摘Ag3PO4 powders were prepared through a precipitation reaction between AgNO3 and precipitating agent solutions that were prepared by adjusting the amount of H3PO4 in the Na3PO4 solutions. The Ag3PO4 powders prepared from the precipitation solution with a pH of 6 showed the highest photocatalytic activity for decolorizing the methylene blue and rhodamine B dyes. These Ag3PO4 powders were further modified by the addition of KBr solutions to obtain AgBr/Ag3PO4 powders and these photocatalysts can decolorize the anionic dyes as reactive orange and methyl orange. The reactive species involved in the photocatalytic degradation process were evaluated for their inhibitory activity using the appropriate scavengers. After photocatalysis, mass spectrometry confirmed that the dyes were degraded to smaller molecules. The ecotoxicities of the dye solutions before and after treatment were evaluated by studying their ability to inhibit the growth of the bioindicator Chlorella vulgaris.
文摘Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hybrid perovskite methylammonium lead bromide(MAPbBr_(3))nanocrystals stabilized in aqueous HBr solution can achieve simultaneous aromatic bromination and hydrogen evolution using HBr as the bromine source under visible light irradiation.By hybridizing MAPbBr_(3) with Pt/Ta_(2)O_(5) and poly(3,4‐ethylenedioxythiophene)polystyrene sulfonate as electron‐and hole‐transporting motifs,aromatic bromides were achieved from aromatic compounds with high yield(up to 99%)and selectivity(up to 99%)with the addition of N,N‐dimethylformamide or its analogs.The mechanistic studies revealed that the bromination proceeds via an electrophilic attack pathway and that HOBr may be the key intermediate in the bromination reaction.
基金Project 2007GGW03 supported by the Science Research Foundation of Guangdong Pharmaceutical University
文摘A spectrophotometric method for the determination of ruthenium(III) is described, based on its catalytic effect on the oxidation reaction of dimethyl yellow (DMY) with potassium bromate in an acid solution medium and in the presence of an OP emulsifier (p-iso-octyl phenoxy polyethoxy ethanol) at 100 °C. This reaction was followed spectrophotometrically by measuring the decrease in the absorbance at 530 nm of the catalytic reaction of DMY. The calibration curve for the recommended method was linear in the concentration range over 0.0–1.0 μg/L and the detection limit of the method for Ru(III) was 0.01 μg/L. The method is highly sensitive, selective and very stable and has been successfully applied for the determination of trace amounts of ruthenium in some ores and metallurgy products with the relative standard deviations (RSD) over 1.6%–2.8% and a recovery over 98.7%–104.0%.
基金supported by the Beijing Municipal Natural Science Foundation(No.8212043)the support from Program for Young Outstanding Scientists of Institute of Chemistry,Chinese Academy of ScienceBeijing National Laboratory for Molecular Sciences。
文摘The photodissociation dynamics of Br-C bond cleavage for BrCN in the wavelength region from 225 nm to 260 nm has been studied by our homebuilt time-slice velocity-map imaging setup.The images for both of the ground state Br(^(2)P_(3/2))and spin-orbit excited Br^(*)(^(2)P_(1/2))channels are obtained at several photodissociation wavelengths.From the analysis of the translational energy release spectra,the detailed vibrational and rotational distributions of CN products have been measured for both of the Br and Br^(*) channels.It is found that the internal excitation of the CN products for the Br^(*) channel is colder than that for the Br channel.The most populated vibrational levels of the CN products are v=0 and 1 for the Br and Br^(*) channels,respectively.For the Br channel,the photodissociation dynamics at longer wavelengths are found to be different from those at shorter wavelengths,as revealed by their dramatically different vibrational and rotational excitations of the CN products.
文摘In this manuscript,Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites was fabricated via an ultrasonic-assisted process.The activity of the as-obtained Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites for photocatalytic CO_(2) reduction was studied under visible light.The as-obtained Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites show a superior activity for photocatalytic CO_(2) reduction to produce CH4 and CO,with an optimum activity achieved over 0.5 Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6).The obvious superior activity observed over Cs_(2)AgBiBr_(6)/Bi_(2)WO_(6) nanocomposites as compared with bare Cs_(2)AgBiBr_(6) and bare Bi_(2)WO_(6) as well as a mechanical mixture of Cs_(2)AgBiBr_(6) and Bi_(2)WO_(6) can be owe to the fabrication of an efficient S-scheme heterojunction,which accelerates the separation of the photogenerated charge carriers in Cs_(2)AgBiBr_(6) and Bi_(2)WO_(6) without sacrificing the high redox capability of Cs_(2)AgBiBr_(6) and Bi_(2)WO_(6).This work demonstrates that the coupling of two photocatalytic materials with staggered band alignment to form an S-scheme heterojunction is an effective strategy to develop efficient photocatalytic systems and also highlights the promising role of using lead free perovskites in photocatalysis.
基金Project 0520002 supported by Natural Science Foundation of Jiangxi Province, China
文摘A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solution medium at 100℃. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 625 nm for the catalytic reaction of methyl green. The calibration curve for the recommended reaction-rate method was linear in the concentration range over 0.00-0.80 μg/L and the detection limit of the method for Ru (III) is 0.006 μg/L. Almost no foreign ions interfered in the determination at less than 25-fold concentration of Ru (Ⅲ). The method is highly sensitive, more selective and very stable, and has been successfully applied for the determination of trace ruthenium in some ores and metallurgy products.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20675009 and No. 90922023). The basis set aug-cc-pVDZ-PP for iodine atom is downloaded at the website http://bse.pnl.gov/ bse/portal.
文摘The theoretical calculation and spectroscopic experiments indicate a kind of triangular three bonding supramolecular complexes CBr4…X^-…-H-C, which consist of carbon tetrabromide, halide, and protic solvent molecule (referring to dichloromethane, chloroform and acetonitrile), can be formed in solution. The strength of halogen and hydrogen bonds in the triangular complexes using halide as common acceptor obeys the order of iodide〉bromide〉chloride. The halogen and hydrogen bonds work weak-cooperatively. Charge transfer bands of halogen bonding complexes between CBra and halide are observed in UV-Vis absorption spectroscopy in three solvents, and then the stoichiometry of 1:1, formation constants K and molar extinction coefficients ε of the halogen bonding complexes are obtained by Benesi-Hildebrand method. The K and ε show a dependence on the solvent dielectric constant and, on the whole, obey an order of iodide〉bromide〉chloride in the same solvents. Furthermore, the C-H vibrational frequencies of solvent molecules vary obviously with the addition of halide, which indicates the C-H…X- interaction. The experimental data indicate that the halogen bond and hydrogen bond coexist by sharing a common halide acceptor as predicted by calculation.
文摘It is investigated the interaction of Ge(IV) with bis(2,3,4-trigodroksifenolazo) benzidine (R) in the presence of KSAS (cationic surface active substances)-CPCl (cetylpyridinium chloride), CPBr (cetylpyridinium bromide) and CTMABr (cetyltrimethylammonium bromide). It is studied the effect pH, time on the formation of ternary complexes. It is determinated of molar absorption coefficients and stability constants of germanium. Binary (Ge-R) and triple (Ge-R-CPCI, Ge-R-CPBr, Ge-R-CTMaBr) complex form at pH 4 and pH 1, respectively. The composition proportion of binar system is 1:2 and the composition proportion triple complex is 1:1:2. The concentration interval of germanium which obeying beer low in the Ge-R 0.12-2.92 mkq/mL, in the Ge-R-CPCI is 0.04-1.46 mkq/mL, in the Ge-R-CPBr is 0.00-1.00 mkq/mL and in the Ge-R-CTMaBr is 0.00-1.00 mkq/mL. Molar absorbtivities of complexes are 45,000, 57,000, 59,000 and 60,000, respectively. The effect of interfering ions and masking agents has been learned. Stability constants of complexes have been determined: lgKl = 7.21 + 0.06 (Ge-R),' lgK1 = 12.08 _+ 0.05 (Ge-R-CPCI), lgK1 = 12.12 + 0.07 (Ge-R-CPBr) and lgK1 = 12.85 + 0.06 (Ge-R-CTMaBr). It is developed highly selective method of photometric determination of trace amounts of Ge(IV) in petroleum coke.