本文利用SAS帮助数据库中的一个数据集sashelp.enso,介绍对自变量进行样条变换后的曲线回归分析方法。在SAS/STAT的TRANSREG过程中,涉及到六种样条变换方法,分别为:B-样条变换、B-样条基函数变换、单调B-样条变换、非迭代惩罚B-样条变...本文利用SAS帮助数据库中的一个数据集sashelp.enso,介绍对自变量进行样条变换后的曲线回归分析方法。在SAS/STAT的TRANSREG过程中,涉及到六种样条变换方法,分别为:B-样条变换、B-样条基函数变换、单调B-样条变换、非迭代惩罚B-样条变换、迭代光滑样条变换、非迭代光滑样条变换。获得的结论是:在确保 R 2≈0.7且回归模型尽可能精简的条件下,“非迭代惩罚B-样条变换”与“迭代光滑样条变换”两种方法是以上六种方法中最好的曲线回归建模方法,这两种方法的拟合效果几乎完全相同。展开更多
文摘本文利用SAS帮助数据库中的一个数据集sashelp.enso,介绍对自变量进行样条变换后的曲线回归分析方法。在SAS/STAT的TRANSREG过程中,涉及到六种样条变换方法,分别为:B-样条变换、B-样条基函数变换、单调B-样条变换、非迭代惩罚B-样条变换、迭代光滑样条变换、非迭代光滑样条变换。获得的结论是:在确保 R 2≈0.7且回归模型尽可能精简的条件下,“非迭代惩罚B-样条变换”与“迭代光滑样条变换”两种方法是以上六种方法中最好的曲线回归建模方法,这两种方法的拟合效果几乎完全相同。