How to get the rapid and stable inversion results and reconstruct the clear subsurface resistivity structures is a focus problem in current magnetotelluric inversion. A stable solution of an ill-posed inverse problem ...How to get the rapid and stable inversion results and reconstruct the clear subsurface resistivity structures is a focus problem in current magnetotelluric inversion. A stable solution of an ill-posed inverse problem was obtained by the regularization methods in which some desired structures were imposed to stabilize the inverse problem. By the smoothness-constrained model and approximate sensitivity method, the stable subsurface resistivity structures were reconstructed. The synthetic examples show that the smoothness-constrained regularized inversion method is effective and can be reasonable to reconstruct three-dimensional subsurface resistivity structures.展开更多
本研究采用与有限元法(finite element method,FEM)相对照的方式,论述了光滑节点域有限元法(node-based smoothed finite element method,NS-FEM)节点域的形成方式,光滑应变矩阵的求解步骤以及光滑有限元形函数的计算方法。利用matlab...本研究采用与有限元法(finite element method,FEM)相对照的方式,论述了光滑节点域有限元法(node-based smoothed finite element method,NS-FEM)节点域的形成方式,光滑应变矩阵的求解步骤以及光滑有限元形函数的计算方法。利用matlab对典型算例进行编程分析,结果表明NS-FEM计算刚度矩阵偏软,位移和应变能为解的上限,应力、应变和应变能具有良好的计算精度且不会产生体积锁定现象等。展开更多
基金Project(20110162120064)supported by Higher School Doctor Subject Special Scientific Research Foundation of ChinaProject(10JJ6059)supported by the Natural Science Foundation of Hunan Province,China
文摘How to get the rapid and stable inversion results and reconstruct the clear subsurface resistivity structures is a focus problem in current magnetotelluric inversion. A stable solution of an ill-posed inverse problem was obtained by the regularization methods in which some desired structures were imposed to stabilize the inverse problem. By the smoothness-constrained model and approximate sensitivity method, the stable subsurface resistivity structures were reconstructed. The synthetic examples show that the smoothness-constrained regularized inversion method is effective and can be reasonable to reconstruct three-dimensional subsurface resistivity structures.
文摘本研究采用与有限元法(finite element method,FEM)相对照的方式,论述了光滑节点域有限元法(node-based smoothed finite element method,NS-FEM)节点域的形成方式,光滑应变矩阵的求解步骤以及光滑有限元形函数的计算方法。利用matlab对典型算例进行编程分析,结果表明NS-FEM计算刚度矩阵偏软,位移和应变能为解的上限,应力、应变和应变能具有良好的计算精度且不会产生体积锁定现象等。