为消除有限元法(finite element method,FEM)处理切屑分离及大变形问题的局限,使用光滑粒子流体动力学法(smooth particle hydrodynamics,SPH)耦合FEM模拟此类问题。工件使用SPH建模,弹丸使用FEM建模,二者通过接触算法实现耦合,通过仿...为消除有限元法(finite element method,FEM)处理切屑分离及大变形问题的局限,使用光滑粒子流体动力学法(smooth particle hydrodynamics,SPH)耦合FEM模拟此类问题。工件使用SPH建模,弹丸使用FEM建模,二者通过接触算法实现耦合,通过仿真实验研究锐边弹丸在不同入射条件下撞击工件时,弹丸的翻转效应对工件表面弹坑深度、切屑堆积高度的影响。结果表明:当前倾角较大时,弹丸向前翻转,对工件表面产生碾压作用,形成尖锐的弹坑,切屑堆积在弹坑前部边缘不与工件分离;当前倾角较小时,弹丸向后翻转,对工件表面产生铲削作用,切屑与工件分离,弹坑横截面光滑而平缓。通过与相关实验及理论数据的比较,验证了仿真模型及结果的正确性,为锐边弹丸侵蚀工件表面的仿真研究提供新的手段。展开更多
文摘为了进一步研究切缝药包爆破机理,在AUTODYN内运用光滑粒子流体动力学与有限单元(SPH FEM)耦合法构建了装药不耦合系数为2.0的切缝药包爆破模型,分析装药爆炸初期的爆轰产物膨胀过程、爆轰产物粒子运动速度及炮孔周围岩体损伤演化历程。结果表明:对于切缝方向,由于没有切缝管的约束作用,爆轰产物粒子能够以较高的速度向前运动,粒子最大运动速度可达到4750m s^-1,最前端粒子在3.5μs到达孔壁,切缝方向岩体开始产生损伤破坏,且随着切缝管内爆轰产物的继续膨胀,切缝方向岩体进一步受到破坏;对于非切缝方向,切缝管的约束作用使得爆轰产物粒子膨胀受阻,粒子最大运动速度仅为800 m s^-1,同时切缝管在爆轰产物的推动下缓慢向炮孔壁运动,12.6μs切缝管到达炮孔壁,非切缝方向岩体开始产生损伤,但损伤展布区域较小,且非切缝方向炮孔壁保持了较好的完整性。
文摘为消除有限元法(finite element method,FEM)处理切屑分离及大变形问题的局限,使用光滑粒子流体动力学法(smooth particle hydrodynamics,SPH)耦合FEM模拟此类问题。工件使用SPH建模,弹丸使用FEM建模,二者通过接触算法实现耦合,通过仿真实验研究锐边弹丸在不同入射条件下撞击工件时,弹丸的翻转效应对工件表面弹坑深度、切屑堆积高度的影响。结果表明:当前倾角较大时,弹丸向前翻转,对工件表面产生碾压作用,形成尖锐的弹坑,切屑堆积在弹坑前部边缘不与工件分离;当前倾角较小时,弹丸向后翻转,对工件表面产生铲削作用,切屑与工件分离,弹坑横截面光滑而平缓。通过与相关实验及理论数据的比较,验证了仿真模型及结果的正确性,为锐边弹丸侵蚀工件表面的仿真研究提供新的手段。