The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu...The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.展开更多
A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment...A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.展开更多
In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been use...In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.展开更多
Microwave precondition has been highlighted as a promising technology for softening the rock mass prior to rock breakage by machine to reduce drill bit/cutter wear as well as inverse production rate.To numerically exp...Microwave precondition has been highlighted as a promising technology for softening the rock mass prior to rock breakage by machine to reduce drill bit/cutter wear as well as inverse production rate.To numerically explore the effect of numerical parameters on rock static strength simulation,and determine the numerical mechanical parameters of microwave-treated basalts for future drilling and cutting simulations,numerical models of uniaxial compression strength(UCS)and Brazilian tensile strength(BTS)were established with the coupling of smoothed particle hydrodynamics and finite element method(SPH-FEM).To eliminate the large rock strength errors caused by microwave-induced damage,the cohesion and internal friction angle of microwave-treated basalt specimens with the same microwave treatment parameters were calibrated based on a linear Mohr-Coulomb theory.Based on parametric sensitivity analysis of SPH simulation of UCS and BTS,experimental UCS and BTS values were simultaneously captured according to the same set of calibrated cohesion and internal friction angle data,and the UCS modeling results are in good agreement with experimental tests.Furthermore,the effect of microwave irradiation parameter on the basalt mechanical behaviors was evaluated.展开更多
In this paper, we present an acceleration strategy for Smoothed Particle Hydrodynamics (SPH) on multi-GPU platform. For single-GPU, we first use a neighborhood search algorithm of compacting cell index combined with...In this paper, we present an acceleration strategy for Smoothed Particle Hydrodynamics (SPH) on multi-GPU platform. For single-GPU, we first use a neighborhood search algorithm of compacting cell index combined with spatial domain characteristics For multi-GPU, we focus on the changing patterns of SPH's computational time. Simple dynamic load balancing algorithm works well because the computational time of each time step changes slowly compared to previous time step. By further optimizing dynamic load balancing algorithm and the communication strategy among GPUs, a nearly linear speedup is achieved in different scenarios with a scale of millions particles. The quality and efficiency of our methods are demonstrated using multiple scenes with different particle numbers.展开更多
Normally large amounts of particles are required to accurately simulate the metal cutting process,which consumes a lot of computing time and storage.Adaptive techniques can help decrease the number of particles,hence ...Normally large amounts of particles are required to accurately simulate the metal cutting process,which consumes a lot of computing time and storage.Adaptive techniques can help decrease the number of particles,hence reducing the runtime.This paper presents a novel adaptive smoothed particle hydrodynamics(SPH)method for the metal cutting simulation.The spatial resolution changes adaptively according to the distance to the tool tip by the particle splitting and merging.More particles are selected in the region where the workpiece and the tool are in contact.Since the contact region constantly changes during the cutting process,two quadrilateral frames are adopted in the adaptive algorithm to dynamically change the distribution of particles.One frame for the refinement,the other for the coarsening.These frames move at the same speed as the tool.To test the computational efficiency,the metal cutting process is simulated by using SPH with three different adaptive approaches.Numerical results show that the proposed adaptive algorithm with dynamic refinement and coarsening can significantly optimize the runtime.展开更多
In this work, a second order smoothed particle hydrodynamics is derived for the study of relativistic heavy ion collisions. The hydrodynamical equation of motion is formulated in terms of the variational principle. In...In this work, a second order smoothed particle hydrodynamics is derived for the study of relativistic heavy ion collisions. The hydrodynamical equation of motion is formulated in terms of the variational principle. In order to describe the fluid of high energy density but of low baryon density, the entropy is taken as the base quantity for the interpolation. The smoothed particle hydrodynamics algorithm employed in this study is of the second order, which guarantees better particle consistency. Furthermore, it is shown that the variational principle preserves the translational invariance of the system, and therefore improves the accuracy of the method. A brief discussion on the potential implications of the model in heavy ion physics as well as in general relativity are also presented.展开更多
基金Project (2009Z001) supported by the Important Item in Guangdong-Hong Kong Key Project, ChinaProject (2010B090400297) supported by the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China
文摘The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
基金Project(2011006B)supported by the Open Project of National Engineering Research Center of Near-Shape Forming for Metallic Materials,ChinaProject(FJ)supported by the CAS"100 talents"Plan
文摘A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.
基金Supported by the National Natural Science Foundation of China under Grant No.10572041,50779008Doctoral Fund of Ministry of Education of China under Grant No.20060217009
文摘In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.
基金the National Natural Science Foundation of China (No. 51774323)the Natural Science Foundation of Hunan Province, China (No. 2020JJ4704)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University, China (No. 2018zzts216) the financial support from the China Scholarship Councilthe support of the high-performance computer from Compute Canada
文摘Microwave precondition has been highlighted as a promising technology for softening the rock mass prior to rock breakage by machine to reduce drill bit/cutter wear as well as inverse production rate.To numerically explore the effect of numerical parameters on rock static strength simulation,and determine the numerical mechanical parameters of microwave-treated basalts for future drilling and cutting simulations,numerical models of uniaxial compression strength(UCS)and Brazilian tensile strength(BTS)were established with the coupling of smoothed particle hydrodynamics and finite element method(SPH-FEM).To eliminate the large rock strength errors caused by microwave-induced damage,the cohesion and internal friction angle of microwave-treated basalt specimens with the same microwave treatment parameters were calibrated based on a linear Mohr-Coulomb theory.Based on parametric sensitivity analysis of SPH simulation of UCS and BTS,experimental UCS and BTS values were simultaneously captured according to the same set of calibrated cohesion and internal friction angle data,and the UCS modeling results are in good agreement with experimental tests.Furthermore,the effect of microwave irradiation parameter on the basalt mechanical behaviors was evaluated.
文摘In this paper, we present an acceleration strategy for Smoothed Particle Hydrodynamics (SPH) on multi-GPU platform. For single-GPU, we first use a neighborhood search algorithm of compacting cell index combined with spatial domain characteristics For multi-GPU, we focus on the changing patterns of SPH's computational time. Simple dynamic load balancing algorithm works well because the computational time of each time step changes slowly compared to previous time step. By further optimizing dynamic load balancing algorithm and the communication strategy among GPUs, a nearly linear speedup is achieved in different scenarios with a scale of millions particles. The quality and efficiency of our methods are demonstrated using multiple scenes with different particle numbers.
基金the National Natural Science Foundation of China(Grant Nos.12002290 and 11772274).
文摘Normally large amounts of particles are required to accurately simulate the metal cutting process,which consumes a lot of computing time and storage.Adaptive techniques can help decrease the number of particles,hence reducing the runtime.This paper presents a novel adaptive smoothed particle hydrodynamics(SPH)method for the metal cutting simulation.The spatial resolution changes adaptively according to the distance to the tool tip by the particle splitting and merging.More particles are selected in the region where the workpiece and the tool are in contact.Since the contact region constantly changes during the cutting process,two quadrilateral frames are adopted in the adaptive algorithm to dynamically change the distribution of particles.One frame for the refinement,the other for the coarsening.These frames move at the same speed as the tool.To test the computational efficiency,the metal cutting process is simulated by using SPH with three different adaptive approaches.Numerical results show that the proposed adaptive algorithm with dynamic refinement and coarsening can significantly optimize the runtime.
基金financial support from Funda o de Amparo à Pesquisa do Estado de So Paulo (FAPESP)Funda o de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)+2 种基金Fundao de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordena o de Aperfei oamento de Pessoal de Nível Superior (CAPES)
文摘In this work, a second order smoothed particle hydrodynamics is derived for the study of relativistic heavy ion collisions. The hydrodynamical equation of motion is formulated in terms of the variational principle. In order to describe the fluid of high energy density but of low baryon density, the entropy is taken as the base quantity for the interpolation. The smoothed particle hydrodynamics algorithm employed in this study is of the second order, which guarantees better particle consistency. Furthermore, it is shown that the variational principle preserves the translational invariance of the system, and therefore improves the accuracy of the method. A brief discussion on the potential implications of the model in heavy ion physics as well as in general relativity are also presented.