In this paper, we present a simple thermal model of Vertical-Cavity Surface-Emitting Laser (VCSEL) light-current (L1) characteristics based on the rate-equation. The model can be implemented in conventional SPICE-...In this paper, we present a simple thermal model of Vertical-Cavity Surface-Emitting Laser (VCSEL) light-current (L1) characteristics based on the rate-equation. The model can be implemented in conventional SPICE-like circuit simulators, including HSPICE, and be used to simulate the key features of VCSEL. The results compare favorably with experimental data from a device reported in the literature. The simple empirical model is especially suitable for Computer Aided Design (CAD), and greatly simplifies the design of optical communication systems.展开更多
基金Project (No. BG2005011) supported by the High Technology Re-search and Development Program of Jiangsu Province, China
文摘In this paper, we present a simple thermal model of Vertical-Cavity Surface-Emitting Laser (VCSEL) light-current (L1) characteristics based on the rate-equation. The model can be implemented in conventional SPICE-like circuit simulators, including HSPICE, and be used to simulate the key features of VCSEL. The results compare favorably with experimental data from a device reported in the literature. The simple empirical model is especially suitable for Computer Aided Design (CAD), and greatly simplifies the design of optical communication systems.