Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by...Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.展开更多
Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low e...Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.展开更多
Combining microwave radiation with photocatalytic systems is a promising method to inhibit photogenerated electron-hole recombination and enhance the photocatalytic reaction performance. In this study, we have designe...Combining microwave radiation with photocatalytic systems is a promising method to inhibit photogenerated electron-hole recombination and enhance the photocatalytic reaction performance. In this study, we have designed Pd/Pb TiO3 catalysts that can use both microwave fields and photocatalysis. Benefiting from the synergistic effect of microwave field and UV light, the Pb TiO3 crystals convert thermal energy into electrical energy via the pyroelectricity effect, generating positive and negative charges(q+ and q-), while Pd nanoparticles significantly improve the quantum efficiency of the photocatalytic process. The composite catalyst significantly enhances the reaction rate and selectivity of the model Suzuki coupling reaction performed with bromobenzene. Microwave fields can directly act on chemical systems, promoting or changing various chemical reactions in unique ways.展开更多
A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary imp...A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary impact factor for the binary eutectic point and ice melting temperature of sodium aluminate solutions with low NaOH concentration. In addition, the phase transition process of sodium aluminate solutions with low NaOH concentration from 123.15 to 283.15 K is divided into four steps: non-crystal to crystal, ternary eutectic reaction, binary eutectic reaction and ice melt. The projection phase diagram of NaOH-Al(OH)3-H2O system at low temperature was plotted, in which the ternary eutectic temperature for sodium aluminate solutions is 183.15 K.展开更多
The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fibe...The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fiber laser is an effective method that can recover optical properties of the mirror surface. The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally researched. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of radiation effect on the deposited surface. Efficient cleaning is ensured by radiation with the power density of less than 107 W/cm2. At this relatively low power density, pollutions are removed in a solid phase and the thermal effect on the mirror is insignificant. Preliminary experiments of the metal mirrors cleaning by fiber laser radiation have demonstrated the possibility of hardware implementation techniques.展开更多
Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, hum...Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, humic substances (HS) content, humic acids (HA) content, fulvic acids (FA), hot water extractable carbon (Chw) content and content total and labile trace elements content. Humic substances quality was assessed by HA/FA ratio and by coloured indexes measured in ultraviolet and visible UV-VIS spectral range. The total and labile contents of Zn, Cd, Cu, Co, Pb, Mo and Se were determined by flame or electro-thermal atomic absorption spectrometry after extraction of the soil samples in the aqua regia (total content) and in the solution of 0.01 M CaCI2. Total and labile trace elements content was correlated with determined carbon fractions and soil reaction. Results showed that studied soils content low amount of TOC and had low quality of humic substances. HA/FA ratio was less than 1 and colour indexes were higher than 4. All determined carbon fractions correlated with labile form of Zn and Cd. Correlation between soil reaction and total zinc content was found. Significant effect of humic substances content on to water-soluble forms of heavy metals was detected.展开更多
Carbon dots (CDs) with average diameter of 3.1 ± 0.5 nm were facilely synthesized with candle soot through hydrothermal reaction in sodium hydroxide aqueous solution. The as-prepared CDs were covered with a lot o...Carbon dots (CDs) with average diameter of 3.1 ± 0.5 nm were facilely synthesized with candle soot through hydrothermal reaction in sodium hydroxide aqueous solution. The as-prepared CDs were covered with a lot of hydroxyls, possessed properties of good water-solubility, anti-photobleaching, salt tolerance, and low cytotoxicity, and had a fluorescence quantum yield (QY) of about 5.5%. The fluorescence of the hydroxyls-coated CDs could be selectively quenched by metal ions such as Cr3+, Al3+ and Fe3+, which is because these metals can easily combine with the hydroxyl groups on the surface of CDs and induce aggregation of hydroxyls-coated CDs. Experiments showed that the quenching of Cr3+ had a Sterm-Volmer constant of 1.03 × 107 M-1 with a liner range of 1.0-25.0 μM and detection limit of 60 nM (3σ).展开更多
Common solar-driven photoelectrochemical(PEC) cells for water splitting were designed by using semiconducting photoactive materials as working photoelectrodes to capture sunlight. Due to the thermodynamic requirement ...Common solar-driven photoelectrochemical(PEC) cells for water splitting were designed by using semiconducting photoactive materials as working photoelectrodes to capture sunlight. Due to the thermodynamic requirement of 1.23 eV and kinetic energy loss of about 0.6 eV, a photo-voltage of 1.8 V produced by PEC cells is generally required for spontaneous water splitting. Therefore, the minimum bandgap of1.8 eV is demanded for photoactive materials in single-photoelectrode PEC cells, and the bandgap of about 1 eV for back photoactive materials is appropriate in tandem PEC cells. All these PEC cells cannot effectively utilize the infrared light from 1250 to 2500 nm. In order to realize the full spectrum utilization of solar light, here, we develop a solar-driven PEC water splitting system integrated with a thermoelectric device. The key feature of this system is that the thermoelectric device produces a voltage as an additional bias for the PEC system by using the temperature difference between the incident infrared-light heated aqueous electrolyte in the PEC cell as the hot source and unirradiated external water as the cold source. Compared to a reference PEC system without the thermoelectric device, this system has a significantly improved overall water splitting activity of 1.6 times and may provide a strategy for accelerating the application of full spectrum solar light-driven PEC cells for hydrogen production.展开更多
Laser lipolysis can effectively treat obesity and its associated diseases, such as hypertension, fatty liver, and hyperlipidemia. However, currently available invasive laser lipolysis, which transmits laser to a fiber...Laser lipolysis can effectively treat obesity and its associated diseases, such as hypertension, fatty liver, and hyperlipidemia. However, currently available invasive laser lipolysis, which transmits laser to a fiber-optic catheter inserted into the subcutaneous tissue for irradiation through an incision, may cause hematomas, infections, and empyrosis. The current study presents a novel, noninvasive approach for laser lipolysis, which directly irradiates the intact skin surface without an incision and preferentially targets adipose tissue at the near-infrared band. High laser energy is necessary to damage adipocytes; however, this may carbonate and burn the dermis. Therefore, the introduction of skin cooling is essential to avoid unwanted hyperthermal injury and improve the threshold of radiant exposure. In the current study, we investigated a novel noninvasive approach assisted with skin cooling by establishing a homogeneous multi-layer skin model. In this method, light propagation in the skin was simulated by using the Monte Carlo method. Skin cooling was employed before laser irradiation to protect the epidermis from thermal damage, which was treated as a boundary condition based on Newton's law. The numerical results showed that the photons were deposited in the adipose layer more than in the other layers. Laser can effectively destroy adipose tissue at an energy density of >200 J/cm^2 at 1210 nm wavelength, whereas at least 300 J/cm^2 is required at 1064 nm to achieve the same effect. In this experiment, at >5 s pulse width, the selectivity of adipose was not obvious. Moreover, the results indicated that 60 ms R134a or R404a spray can effectively reduce the temperature of the epidermis. R404a exhibited a stronger cooling effect than R134a. Cold air cooling at -10 °C for 10 s could effectively decrease the skin temperature, and deeper cooling could be achieved by cold air cooling compared with cryogen spray cooling.展开更多
A series of pyrochlore oxides, R2Ru2O7 (R=Pr3+, Sm3+–Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by...A series of pyrochlore oxides, R2Ru2O7 (R=Pr3+, Sm3+–Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by powder X-ray diffraction, scanning electron microscopy, energy-disperse X-ray spectroscopy, and dc susceptibility, and the factors that affected the crystallization were discussed. It was found that the purity of products depends strongly on the raw materials and the amount of alkalinity in the initial reaction mixtures. The ZFC and FC susceptibilities of all of the compounds R2Ru2O7 at low temperature were also measured and discussed.展开更多
基金The project was supported by the National Key R&D Program of China(2021YFF0500702)Natural Science Foundation of Shanghai(22JC1404200)+3 种基金Program of Shanghai Academic/Technology Research Leader(20XD1404000)Natural Science Foundation of China(U22B20136,22293023)Science and Technology Major Project of Inner Mongolia(2021ZD0042)the Youth Innovation Promotion Association of CAS。
文摘Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.
基金supported by the Belt and Road Initiative by Chinese Academy of Sciencesthe National Natural Science Foundation of China(21673052,11404074)
文摘Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.
文摘Combining microwave radiation with photocatalytic systems is a promising method to inhibit photogenerated electron-hole recombination and enhance the photocatalytic reaction performance. In this study, we have designed Pd/Pb TiO3 catalysts that can use both microwave fields and photocatalysis. Benefiting from the synergistic effect of microwave field and UV light, the Pb TiO3 crystals convert thermal energy into electrical energy via the pyroelectricity effect, generating positive and negative charges(q+ and q-), while Pd nanoparticles significantly improve the quantum efficiency of the photocatalytic process. The composite catalyst significantly enhances the reaction rate and selectivity of the model Suzuki coupling reaction performed with bromobenzene. Microwave fields can directly act on chemical systems, promoting or changing various chemical reactions in unique ways.
基金Project(51374251)supported by the National Natural Science Foundation of China
文摘A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary impact factor for the binary eutectic point and ice melting temperature of sodium aluminate solutions with low NaOH concentration. In addition, the phase transition process of sodium aluminate solutions with low NaOH concentration from 123.15 to 283.15 K is divided into four steps: non-crystal to crystal, ternary eutectic reaction, binary eutectic reaction and ice melt. The projection phase diagram of NaOH-Al(OH)3-H2O system at low temperature was plotted, in which the ternary eutectic temperature for sodium aluminate solutions is 183.15 K.
文摘The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fiber laser is an effective method that can recover optical properties of the mirror surface. The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally researched. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of radiation effect on the deposited surface. Efficient cleaning is ensured by radiation with the power density of less than 107 W/cm2. At this relatively low power density, pollutions are removed in a solid phase and the thermal effect on the mirror is insignificant. Preliminary experiments of the metal mirrors cleaning by fiber laser radiation have demonstrated the possibility of hardware implementation techniques.
文摘Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, humic substances (HS) content, humic acids (HA) content, fulvic acids (FA), hot water extractable carbon (Chw) content and content total and labile trace elements content. Humic substances quality was assessed by HA/FA ratio and by coloured indexes measured in ultraviolet and visible UV-VIS spectral range. The total and labile contents of Zn, Cd, Cu, Co, Pb, Mo and Se were determined by flame or electro-thermal atomic absorption spectrometry after extraction of the soil samples in the aqua regia (total content) and in the solution of 0.01 M CaCI2. Total and labile trace elements content was correlated with determined carbon fractions and soil reaction. Results showed that studied soils content low amount of TOC and had low quality of humic substances. HA/FA ratio was less than 1 and colour indexes were higher than 4. All determined carbon fractions correlated with labile form of Zn and Cd. Correlation between soil reaction and total zinc content was found. Significant effect of humic substances content on to water-soluble forms of heavy metals was detected.
基金financially supported by the National Natural Science Foundation of China (21035005)
文摘Carbon dots (CDs) with average diameter of 3.1 ± 0.5 nm were facilely synthesized with candle soot through hydrothermal reaction in sodium hydroxide aqueous solution. The as-prepared CDs were covered with a lot of hydroxyls, possessed properties of good water-solubility, anti-photobleaching, salt tolerance, and low cytotoxicity, and had a fluorescence quantum yield (QY) of about 5.5%. The fluorescence of the hydroxyls-coated CDs could be selectively quenched by metal ions such as Cr3+, Al3+ and Fe3+, which is because these metals can easily combine with the hydroxyl groups on the surface of CDs and induce aggregation of hydroxyls-coated CDs. Experiments showed that the quenching of Cr3+ had a Sterm-Volmer constant of 1.03 × 107 M-1 with a liner range of 1.0-25.0 μM and detection limit of 60 nM (3σ).
基金This work was supported by the National Natural Science Foundation of China(51825204 and 51629201)the Key Research Program of Frontier Sciences CAS(QYZDB-SSW-JSC039).
文摘Common solar-driven photoelectrochemical(PEC) cells for water splitting were designed by using semiconducting photoactive materials as working photoelectrodes to capture sunlight. Due to the thermodynamic requirement of 1.23 eV and kinetic energy loss of about 0.6 eV, a photo-voltage of 1.8 V produced by PEC cells is generally required for spontaneous water splitting. Therefore, the minimum bandgap of1.8 eV is demanded for photoactive materials in single-photoelectrode PEC cells, and the bandgap of about 1 eV for back photoactive materials is appropriate in tandem PEC cells. All these PEC cells cannot effectively utilize the infrared light from 1250 to 2500 nm. In order to realize the full spectrum utilization of solar light, here, we develop a solar-driven PEC water splitting system integrated with a thermoelectric device. The key feature of this system is that the thermoelectric device produces a voltage as an additional bias for the PEC system by using the temperature difference between the incident infrared-light heated aqueous electrolyte in the PEC cell as the hot source and unirradiated external water as the cold source. Compared to a reference PEC system without the thermoelectric device, this system has a significantly improved overall water splitting activity of 1.6 times and may provide a strategy for accelerating the application of full spectrum solar light-driven PEC cells for hydrogen production.
基金financially supported by the National Natural Science Foundation of China (Grant No.51336006 and 51727811)
文摘Laser lipolysis can effectively treat obesity and its associated diseases, such as hypertension, fatty liver, and hyperlipidemia. However, currently available invasive laser lipolysis, which transmits laser to a fiber-optic catheter inserted into the subcutaneous tissue for irradiation through an incision, may cause hematomas, infections, and empyrosis. The current study presents a novel, noninvasive approach for laser lipolysis, which directly irradiates the intact skin surface without an incision and preferentially targets adipose tissue at the near-infrared band. High laser energy is necessary to damage adipocytes; however, this may carbonate and burn the dermis. Therefore, the introduction of skin cooling is essential to avoid unwanted hyperthermal injury and improve the threshold of radiant exposure. In the current study, we investigated a novel noninvasive approach assisted with skin cooling by establishing a homogeneous multi-layer skin model. In this method, light propagation in the skin was simulated by using the Monte Carlo method. Skin cooling was employed before laser irradiation to protect the epidermis from thermal damage, which was treated as a boundary condition based on Newton's law. The numerical results showed that the photons were deposited in the adipose layer more than in the other layers. Laser can effectively destroy adipose tissue at an energy density of >200 J/cm^2 at 1210 nm wavelength, whereas at least 300 J/cm^2 is required at 1064 nm to achieve the same effect. In this experiment, at >5 s pulse width, the selectivity of adipose was not obvious. Moreover, the results indicated that 60 ms R134a or R404a spray can effectively reduce the temperature of the epidermis. R404a exhibited a stronger cooling effect than R134a. Cold air cooling at -10 °C for 10 s could effectively decrease the skin temperature, and deeper cooling could be achieved by cold air cooling compared with cryogen spray cooling.
基金supported by the National Natural Science Foundation of China (90922034)
文摘A series of pyrochlore oxides, R2Ru2O7 (R=Pr3+, Sm3+–Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by powder X-ray diffraction, scanning electron microscopy, energy-disperse X-ray spectroscopy, and dc susceptibility, and the factors that affected the crystallization were discussed. It was found that the purity of products depends strongly on the raw materials and the amount of alkalinity in the initial reaction mixtures. The ZFC and FC susceptibilities of all of the compounds R2Ru2O7 at low temperature were also measured and discussed.