Geothermal power plants are receiving increasing attention as regards the mobilization of mercury (Hg) to the environment. Hg is a trace element that may be present in the geothermal fluid, but due to its volatility...Geothermal power plants are receiving increasing attention as regards the mobilization of mercury (Hg) to the environment. Hg is a trace element that may be present in the geothermal fluid, but due to its volatility, it is transferred mainly into the vapor phase. Hence, it may be mostly discharged to the atmosphere with the non-condensable gases. Olkaria geothermal field hosts 3 geothermal power plants. In this area Hg deposition fluxes have not been studied. Concentrations and wet deposition fluxes of total mercury (T-Hg) were determined from April 2009 to May 2010 at 2 sites in this field. Event-based precipitation samples were collected using fabricated bulk precipitation samplers. Samples were treated according to trace metal protocol and analyzed by cold vapor atomic fluorescence spectrometry (CVAFS). This paper thus reports the first ever determination of T-Hg concentrations and fluxes in precipitation. The T-Hg concentration in samples ranged from 0.002-0.0602 μg/L at the two sites, however, the volume-weighted mean concentration and wet deposition flux were 0.01974 and 0.02884μg.L^-1 and 0.0167-1.45 μg.m2 during the study period. The annual volume-weighted mean wet deposition fluxes of T-Hg for 2 sites were 13.74 and 19.83 μg.m-2.yr-1 with an average flux of 16.785μg.m-2.yr-1. Hg concentrations and the Hg fluxes in precipitation showed seasonal trends being lowest in the short-rains and highest in the long rains. The concentrations of T-Hg for the 2 sites is negatively correlated with the precipitation depth (r2 = 0.26 & r2 = 0.0065), suggesting that scavenging of particle-bound mercury from the atmosphere is an important mechanism contributing to mercury in rainwater. Mean Hg concentrations in precipitation at the study sites were comparable to the ranges reported for Canada and the USA by the Mercury Deposition Network (MDN).展开更多
文摘Geothermal power plants are receiving increasing attention as regards the mobilization of mercury (Hg) to the environment. Hg is a trace element that may be present in the geothermal fluid, but due to its volatility, it is transferred mainly into the vapor phase. Hence, it may be mostly discharged to the atmosphere with the non-condensable gases. Olkaria geothermal field hosts 3 geothermal power plants. In this area Hg deposition fluxes have not been studied. Concentrations and wet deposition fluxes of total mercury (T-Hg) were determined from April 2009 to May 2010 at 2 sites in this field. Event-based precipitation samples were collected using fabricated bulk precipitation samplers. Samples were treated according to trace metal protocol and analyzed by cold vapor atomic fluorescence spectrometry (CVAFS). This paper thus reports the first ever determination of T-Hg concentrations and fluxes in precipitation. The T-Hg concentration in samples ranged from 0.002-0.0602 μg/L at the two sites, however, the volume-weighted mean concentration and wet deposition flux were 0.01974 and 0.02884μg.L^-1 and 0.0167-1.45 μg.m2 during the study period. The annual volume-weighted mean wet deposition fluxes of T-Hg for 2 sites were 13.74 and 19.83 μg.m-2.yr-1 with an average flux of 16.785μg.m-2.yr-1. Hg concentrations and the Hg fluxes in precipitation showed seasonal trends being lowest in the short-rains and highest in the long rains. The concentrations of T-Hg for the 2 sites is negatively correlated with the precipitation depth (r2 = 0.26 & r2 = 0.0065), suggesting that scavenging of particle-bound mercury from the atmosphere is an important mechanism contributing to mercury in rainwater. Mean Hg concentrations in precipitation at the study sites were comparable to the ranges reported for Canada and the USA by the Mercury Deposition Network (MDN).