由于太阳能自身的间歇性和不稳定性,提高太阳能发电并网的质量成为近年来的研究热点。太阳能光伏‒光热(photovoltaic/concentrated solar power,PV-CSP)复合发电技术作为一种新兴技术,相比于单独的太阳能光伏(PV)和太阳能热(CSP)发电技...由于太阳能自身的间歇性和不稳定性,提高太阳能发电并网的质量成为近年来的研究热点。太阳能光伏‒光热(photovoltaic/concentrated solar power,PV-CSP)复合发电技术作为一种新兴技术,相比于单独的太阳能光伏(PV)和太阳能热(CSP)发电技术具有诸多优势,目前已有多种技术形式实现了商业化。介绍了PV、CSP发电技术及PV-CSP复合发电技术,通过一些典型商业化PV-CSP复合电站的建设及运行情况,分析了当今商业化PV-CSP复合电站的应用现状,并综述了近年来对PV-CSP复合发电系统的技术和经济性研究情况。展开更多
Lattice matched Ga1-x Inx Asy Sb1-y quaternary alloy films for thermophotovoltaic cells were successfully grown on n-type GaSb substrates by liquid phase epitaxy. Mirror-like surfaces for the epitaxial layers were ach...Lattice matched Ga1-x Inx Asy Sb1-y quaternary alloy films for thermophotovoltaic cells were successfully grown on n-type GaSb substrates by liquid phase epitaxy. Mirror-like surfaces for the epitaxial layers were achieved and evaluated by atomic force microscopy. The composition of the Ga1-x Inx Asy Sb1-y layer was characterized by energy dispersive X-ray analysis with the result that x- 0.2, y = 0.17. The absorption edges of the Ga1-x InxAsy Sb1-y films were determined to be 2. 256μm at room temperature by Fourier transform infrared transmission spectrum analysis, corresponding to an energy gap of 0.55eV. Hall measurements show that the highest obtained electron mobility in the undoped p-type samples is 512cm^2/(V · s) and the carrier density is 6.1 × 10^16 cm^-3 at room temperature. Finally,GaInAsSb based thermophotovol- taic cells in different structures with quantum efficiency values of around 60% were fabricated and the spectrum response characteristics of the cells are discussed.展开更多
In this paper, an idea and a realization of a hybrid Operational solar system is presented and practically verified discussed on the base of the performance and efficiency results, is confirmed. solution for photovolt...In this paper, an idea and a realization of a hybrid Operational solar system is presented and practically verified discussed on the base of the performance and efficiency results, is confirmed. solution for photovoltaic and photothermal conversion is presented. by the series of experiments. Improvements of the construction are The synergy effect ofphotothermal and photovoltaic part cooperation展开更多
A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: o...A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.展开更多
文摘由于太阳能自身的间歇性和不稳定性,提高太阳能发电并网的质量成为近年来的研究热点。太阳能光伏‒光热(photovoltaic/concentrated solar power,PV-CSP)复合发电技术作为一种新兴技术,相比于单独的太阳能光伏(PV)和太阳能热(CSP)发电技术具有诸多优势,目前已有多种技术形式实现了商业化。介绍了PV、CSP发电技术及PV-CSP复合发电技术,通过一些典型商业化PV-CSP复合电站的建设及运行情况,分析了当今商业化PV-CSP复合电站的应用现状,并综述了近年来对PV-CSP复合发电系统的技术和经济性研究情况。
文摘Lattice matched Ga1-x Inx Asy Sb1-y quaternary alloy films for thermophotovoltaic cells were successfully grown on n-type GaSb substrates by liquid phase epitaxy. Mirror-like surfaces for the epitaxial layers were achieved and evaluated by atomic force microscopy. The composition of the Ga1-x Inx Asy Sb1-y layer was characterized by energy dispersive X-ray analysis with the result that x- 0.2, y = 0.17. The absorption edges of the Ga1-x InxAsy Sb1-y films were determined to be 2. 256μm at room temperature by Fourier transform infrared transmission spectrum analysis, corresponding to an energy gap of 0.55eV. Hall measurements show that the highest obtained electron mobility in the undoped p-type samples is 512cm^2/(V · s) and the carrier density is 6.1 × 10^16 cm^-3 at room temperature. Finally,GaInAsSb based thermophotovol- taic cells in different structures with quantum efficiency values of around 60% were fabricated and the spectrum response characteristics of the cells are discussed.
文摘In this paper, an idea and a realization of a hybrid Operational solar system is presented and practically verified discussed on the base of the performance and efficiency results, is confirmed. solution for photovoltaic and photothermal conversion is presented. by the series of experiments. Improvements of the construction are The synergy effect ofphotothermal and photovoltaic part cooperation
基金supported by the National Basic Research Program of China ("973" Program), (Grantt No. 2010CB227305)the CAS Solar Energy Action Program (Grant No. CX2090130012)
文摘A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.