Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Th...Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.展开更多
The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of ...The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.展开更多
A novel method of initiating nuclear fusion reactions in a full plasma environment was suggested, and a proof-of-concept experiment was carried out with the D +D → n+3He reaction. In this new approach, two plasma j...A novel method of initiating nuclear fusion reactions in a full plasma environment was suggested, and a proof-of-concept experiment was carried out with the D +D → n+3He reaction. In this new approach, two plasma jets generated by high-intensity lasers collide headon-head. The center-of-mass energy of the nuclei increases accordingly, and therefore, reaction products can be significantly enhanced, especially in the sub-Coulomb barrier ranges. As a result of the fusion reaction, up to - 7.6 ×105 neutrons had been observed. This new type of "plasma collider" could provide an innovative tool to study nuclear reactions under astrophysical conditions.展开更多
基金This work was supported by the National Natural Science Foundation of China(52073162,and 11774204)the Major Program of Natural Science Foundation of Shandong Province(ZR2019ZD43)X.T.H also acknowledged support from the ARC Centre of Excellence in Exciton Science(CE170100026).H.Y.thanks the Qilu Young Scholar Program of Shandong University.
文摘Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.
基金supported by the Nanjing University of Science & Technology Research Funding (Grant No. 2010ZDJH09)
文摘The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.
基金supported by the National Basic Research Program of China(2013CBA01501 and2013CB834401)the National Natural Science Foundation of China(11135012 and 11135005)+1 种基金the Doctoral Fund of Ministry of Education of China(20120073110065)Shanghai Municipal Science and Technology Commission(11DZ2260700)for the supports
文摘A novel method of initiating nuclear fusion reactions in a full plasma environment was suggested, and a proof-of-concept experiment was carried out with the D +D → n+3He reaction. In this new approach, two plasma jets generated by high-intensity lasers collide headon-head. The center-of-mass energy of the nuclei increases accordingly, and therefore, reaction products can be significantly enhanced, especially in the sub-Coulomb barrier ranges. As a result of the fusion reaction, up to - 7.6 ×105 neutrons had been observed. This new type of "plasma collider" could provide an innovative tool to study nuclear reactions under astrophysical conditions.