Exotic quantum phenomena may appear in material systems with multiple orders or phases,where the mutual interactions can give rise to new physics beyond that of each component.Here,we report spectroscopic evidence for...Exotic quantum phenomena may appear in material systems with multiple orders or phases,where the mutual interactions can give rise to new physics beyond that of each component.Here,we report spectroscopic evidence for a unique combination of topology and correlation effects in the kagome superconductor CsV_(3)Sb_(5).Topologically nontrivial surface states are observed near the Fermi energy(E_(F)),indicating that the topological physics may be active upon entering the superconducting state.Flat bands are observed,suggesting that electron correlation effects are also at play in this system.Our results reveal the peculiar electronic structure of CsV_(3)Sb_(5),which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices.They also establish CsV_(3)Sb_(5)as a unique platform for exploring the interactions between the charge order,topology,correlation effects and superconductivity.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(WK3510000012 and WK3510000008)USTC Start-up Fund and National Natural Science Foundation of China(12004363)+6 种基金supported by the Swiss National Science Foundation(200021-188413)the SinoSwiss Science and Technology Cooperation(IZLCZ2-170075)supported via the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i Program under award DMR-1906325the shared facilities of the NSF Materials Research Science and Engineering Center at UC Santa Barbara(DMR-1720256)supported by NSF CNS-1725797 and NSF DMR-1720256support from the California NanoSystems Institute through the Elings Fellowship programsupported by the National Science Foundation Graduate Research Fellowship Program(DGE-1650114)。
文摘Exotic quantum phenomena may appear in material systems with multiple orders or phases,where the mutual interactions can give rise to new physics beyond that of each component.Here,we report spectroscopic evidence for a unique combination of topology and correlation effects in the kagome superconductor CsV_(3)Sb_(5).Topologically nontrivial surface states are observed near the Fermi energy(E_(F)),indicating that the topological physics may be active upon entering the superconducting state.Flat bands are observed,suggesting that electron correlation effects are also at play in this system.Our results reveal the peculiar electronic structure of CsV_(3)Sb_(5),which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices.They also establish CsV_(3)Sb_(5)as a unique platform for exploring the interactions between the charge order,topology,correlation effects and superconductivity.