Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spec...Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spectroscopy(UV–Vis), Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction(XRD), Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). Ni Gs were used as adsorbent for the removal of dyes such as crystal violet(CV), eosin Y(EY), orange II(OR) and anionic pollutant nitrate(NO3-), sulfate(SO42-) from aqueous solution. Adsorption capacity of Ni Gs was examined in batch modes at different p H, contact time, Ni G dosage, initial dye and pollutant concentration. The adsorption process was p H dependent and the adsorption capacity increased with increase in contact time and with that of Ni G dosage, whereas the adsorption capacity decreased at higher concentrations of dyes and pollutants. Maximum percentage removal of dyes and pollutants were observed at 40, 20,30, 10 and 10 mg·L-1initial concentration of CV, EY, OR, NO3-and SO42-respectively. The maximum adsorption capacities in Langmuir isotherm were found to be 0.454, 0.615, 0.273, 0.795 and 0.645 mg·g-1at p H 8, 3, 3, 7and 7 for CV, EY, OR, NO3-and SO42-respectively. The higher coef ficients of correlation in Langmuir isotherm suggested monolayer adsorption. The mean energies(E), 2.23, 3.53, 2.50, 5.00 and 3.16 k J·mol-1for CV, EY, OR, NO3-and SO42-respectively, calculated from the Dubinin–Radushkevich isotherm showed physical adsorption of adsorbate onto Ni Gs. Adsorption kinetics data was better fitted to pseudo-second-order kinetics with R2 N 0.870 for all dyes and pollutants. Ni Gs were found to be an effective adsorbent for the removal of dyes and pollutants from aqueous solution and can be applied to treat textile and tannery ef fluents.展开更多
Mercury is highly toxic heavy metal pollution attracted the attention of the world. This paper analyzes the situation the main industry in mercury use PVC production. Manufacture of battery, electric light, medical eq...Mercury is highly toxic heavy metal pollution attracted the attention of the world. This paper analyzes the situation the main industry in mercury use PVC production. Manufacture of battery, electric light, medical equipment in China. Furthermore, it discusses the details of the best technology the use of mercury emissions reduction and mercury control in that industry. The result is that certain technologies such as low mercury. In PVC industry catalyst, as mercury battery, amalgam substituted Mercury and LED light in the electric light source industry. electronics the thermometer and blood pressure in the medical device industry and so on, reduce mercury able to make full use of and emission reduction in risk mercury pollution to the environment.展开更多
Recently, thick haze and poisonous smoke have cloaked the surrounding air in Malaysia due to the uncontrollable and unethical burning of nearby country. This devastating episode of open burning started in the year 199...Recently, thick haze and poisonous smoke have cloaked the surrounding air in Malaysia due to the uncontrollable and unethical burning of nearby country. This devastating episode of open burning started in the year 1997 in Indonesia which deeply affected most of the ASEAN (association of southeast asian nations) countries especially their neighbour Malaysia and Singapore. The PV (photovoltaic) technology as an alternative means of energy generation experiences such significant energy decrease based on this condition which is due to the shading of sunlight. The 6 h claims of good sunlight has become not more than 2 h and gets worst when the API (air pollution index) struck 200 levels which is at very unhealthy condition. This study embraces some findings from 1 kWp PV generator field data installed in Malaysia reflecting the daily energy decrease operated during this unhealthy weather condition. It is found that, such significant energy decrease with the value of 0.43 W power output per increment of one point API. This value shows such concrete proof of additional factors to be considered in PV modelling in line to support PV technology adaptation in the ASEAN region.展开更多
Two-dimensional/two-dimensional(2D/2D)hybrid nanomaterials have triggered extensive research in the photocatalytic field.The construction of emerging 2D/2D heterostructures can generate many intriguing advantages in e...Two-dimensional/two-dimensional(2D/2D)hybrid nanomaterials have triggered extensive research in the photocatalytic field.The construction of emerging 2D/2D heterostructures can generate many intriguing advantages in exploring high-performance photocatalysts,mainly including preferable dimensionality design allowing large contact interface area,integrated merits of each 2D component and rapid charge separation by the heterojunction effect.Herein,we provide a comprehensive review of the recent progress on the fundamental aspects,general synthesis strategies(in situ growth and ex situ assembly)of 2D/2D heterostructured photocatalysts and highlight their applications in the fields of hydrogen evolution,CO2 reduction and removal of pollutants.Furthermore,the perspectives on the remaining challenges and future opportunities regarding the development of 2D/2D heterostructure photocatalysts are also presented.展开更多
文摘Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spectroscopy(UV–Vis), Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction(XRD), Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). Ni Gs were used as adsorbent for the removal of dyes such as crystal violet(CV), eosin Y(EY), orange II(OR) and anionic pollutant nitrate(NO3-), sulfate(SO42-) from aqueous solution. Adsorption capacity of Ni Gs was examined in batch modes at different p H, contact time, Ni G dosage, initial dye and pollutant concentration. The adsorption process was p H dependent and the adsorption capacity increased with increase in contact time and with that of Ni G dosage, whereas the adsorption capacity decreased at higher concentrations of dyes and pollutants. Maximum percentage removal of dyes and pollutants were observed at 40, 20,30, 10 and 10 mg·L-1initial concentration of CV, EY, OR, NO3-and SO42-respectively. The maximum adsorption capacities in Langmuir isotherm were found to be 0.454, 0.615, 0.273, 0.795 and 0.645 mg·g-1at p H 8, 3, 3, 7and 7 for CV, EY, OR, NO3-and SO42-respectively. The higher coef ficients of correlation in Langmuir isotherm suggested monolayer adsorption. The mean energies(E), 2.23, 3.53, 2.50, 5.00 and 3.16 k J·mol-1for CV, EY, OR, NO3-and SO42-respectively, calculated from the Dubinin–Radushkevich isotherm showed physical adsorption of adsorbate onto Ni Gs. Adsorption kinetics data was better fitted to pseudo-second-order kinetics with R2 N 0.870 for all dyes and pollutants. Ni Gs were found to be an effective adsorbent for the removal of dyes and pollutants from aqueous solution and can be applied to treat textile and tannery ef fluents.
文摘Mercury is highly toxic heavy metal pollution attracted the attention of the world. This paper analyzes the situation the main industry in mercury use PVC production. Manufacture of battery, electric light, medical equipment in China. Furthermore, it discusses the details of the best technology the use of mercury emissions reduction and mercury control in that industry. The result is that certain technologies such as low mercury. In PVC industry catalyst, as mercury battery, amalgam substituted Mercury and LED light in the electric light source industry. electronics the thermometer and blood pressure in the medical device industry and so on, reduce mercury able to make full use of and emission reduction in risk mercury pollution to the environment.
文摘Recently, thick haze and poisonous smoke have cloaked the surrounding air in Malaysia due to the uncontrollable and unethical burning of nearby country. This devastating episode of open burning started in the year 1997 in Indonesia which deeply affected most of the ASEAN (association of southeast asian nations) countries especially their neighbour Malaysia and Singapore. The PV (photovoltaic) technology as an alternative means of energy generation experiences such significant energy decrease based on this condition which is due to the shading of sunlight. The 6 h claims of good sunlight has become not more than 2 h and gets worst when the API (air pollution index) struck 200 levels which is at very unhealthy condition. This study embraces some findings from 1 kWp PV generator field data installed in Malaysia reflecting the daily energy decrease operated during this unhealthy weather condition. It is found that, such significant energy decrease with the value of 0.43 W power output per increment of one point API. This value shows such concrete proof of additional factors to be considered in PV modelling in line to support PV technology adaptation in the ASEAN region.
基金financially supported by the Australia Research Council(ARC DP 180102062)the National Natural Science Foundation of China(51602163)。
文摘Two-dimensional/two-dimensional(2D/2D)hybrid nanomaterials have triggered extensive research in the photocatalytic field.The construction of emerging 2D/2D heterostructures can generate many intriguing advantages in exploring high-performance photocatalysts,mainly including preferable dimensionality design allowing large contact interface area,integrated merits of each 2D component and rapid charge separation by the heterojunction effect.Herein,we provide a comprehensive review of the recent progress on the fundamental aspects,general synthesis strategies(in situ growth and ex situ assembly)of 2D/2D heterostructured photocatalysts and highlight their applications in the fields of hydrogen evolution,CO2 reduction and removal of pollutants.Furthermore,the perspectives on the remaining challenges and future opportunities regarding the development of 2D/2D heterostructure photocatalysts are also presented.