Liquid argon flow along a nanochannel is studied using molecular dynamics (MD) simulation in this work.Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used as the MD simulator.The effects of redu...Liquid argon flow along a nanochannel is studied using molecular dynamics (MD) simulation in this work.Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used as the MD simulator.The effects of reduced forces at 0.5,1.0 and 2.0 on argon flow on system energy in the form of system potential energy,pressure and velocity profile are described.Output in the form of three-dimensional visualization of the system at steady-state condition using Visual Molecular Dynamics (VMD) is provided to describe the dynamics of the argon atoms.The equilibrium state is reached after 16000 time steps.The effects on system energy,pressure and velocity profile due to reduced force of 2.0 (F2) are clearly distinguishable from the other two lower forces where sufficiently high net force along the direction of the nanochannel for F2 renders the attractive and repulsive forces between the argon atoms virtually non-existent.A reduced force of 0.5 (F0.5) provides liquid argon flow that approaches Poiseuille (laminar) flow as clearly shown by the n-shaped average velocity profile.The extension of the present MD model to a more practical application affords scientists and engineers a good option for simulation of other nanofluidic dynamics processes.展开更多
Results of investigations into the CO2 content in tree disc rings by the method proposed here have shown that a considerable part of CO2 generated under cell respiration is found in tree stems. Besides, annual CO2 dis...Results of investigations into the CO2 content in tree disc rings by the method proposed here have shown that a considerable part of CO2 generated under cell respiration is found in tree stems. Besides, annual CO2 distribution in tree rings exhibits a well-defined cyclicity. Results obtained from investigations into long-term CO2 and H2O variations in tree discs performed by different methods are presented. Wavelet and spectral analyses of the relationship between CO2 and H2O variations in a Siberian stone pine disc and meteorological parameters were made. The CO2 annual distributions of seven spruce tree discs were examined by the Caterpiller-SSA method. Wood samples of Siberian stone pine and spruce trees were taken from the same site in Tomsk region (Siberia, Russia) that characterized by an optimum growth habitat. Conclusions are made regarding the response of the annual CO2 and H2O conifer disc tree ring distributions to different climatic factors.展开更多
基金Supported by the Academy of Sciences,Malaysia and Ministry of Science and Technology & Innovation
文摘Liquid argon flow along a nanochannel is studied using molecular dynamics (MD) simulation in this work.Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used as the MD simulator.The effects of reduced forces at 0.5,1.0 and 2.0 on argon flow on system energy in the form of system potential energy,pressure and velocity profile are described.Output in the form of three-dimensional visualization of the system at steady-state condition using Visual Molecular Dynamics (VMD) is provided to describe the dynamics of the argon atoms.The equilibrium state is reached after 16000 time steps.The effects on system energy,pressure and velocity profile due to reduced force of 2.0 (F2) are clearly distinguishable from the other two lower forces where sufficiently high net force along the direction of the nanochannel for F2 renders the attractive and repulsive forces between the argon atoms virtually non-existent.A reduced force of 0.5 (F0.5) provides liquid argon flow that approaches Poiseuille (laminar) flow as clearly shown by the n-shaped average velocity profile.The extension of the present MD model to a more practical application affords scientists and engineers a good option for simulation of other nanofluidic dynamics processes.
文摘Results of investigations into the CO2 content in tree disc rings by the method proposed here have shown that a considerable part of CO2 generated under cell respiration is found in tree stems. Besides, annual CO2 distribution in tree rings exhibits a well-defined cyclicity. Results obtained from investigations into long-term CO2 and H2O variations in tree discs performed by different methods are presented. Wavelet and spectral analyses of the relationship between CO2 and H2O variations in a Siberian stone pine disc and meteorological parameters were made. The CO2 annual distributions of seven spruce tree discs were examined by the Caterpiller-SSA method. Wood samples of Siberian stone pine and spruce trees were taken from the same site in Tomsk region (Siberia, Russia) that characterized by an optimum growth habitat. Conclusions are made regarding the response of the annual CO2 and H2O conifer disc tree ring distributions to different climatic factors.