It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PS II and PS I could be formed in dark-grow...It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PS II and PS I could be formed in dark-grown lotus (Nelumbo nucifera Gaertn.) seedlings. Lots of evidence were given: First I during the dark-grown period, the single fluorescence emission peak at 679 nm in lotus embryo red-shifted and transformed into the normal PS II fluorescence emission; Simultaneously, PS I fluorescence emission at 730 nm appeared and increased obviously; Second, with partial denaturing SDS-PAGE method, PS I chlorophyll-protein complex could be clearly separated from 10 days dark-grown lotus seedlings; Third, the existence of Lhca1 was also proved by Western blots. Moreover, measurements of electron transfer rate demonstrated that both PS II and PS I core in dark-grown lotus seedlings were photochemically active.展开更多
Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, whic...Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, which is the first case from Diaphanes, was identified and sequenced. The luciferase gene from D. pectinealis spans 1958 base pairs (bp) from the start to the stop codon, including seven exons separated by six introns, and encoding a 547-residuelong polypeptide. Its deduced amino acid sequence showed high protein similarity to those of the Lampyrini tribe (93 - 94% ) and the Cratomorphini tribe (92%), while low similarity was found with the North American firefly Photinus pyralis (83%) of the Photinini tribe within the same subfamily Lampyrinae. The phylogenetic analysis performed with the deduced amino acid sequences of the luciferase gene further confirms that D. pectinealis, Pyrocoelia, Lampyris, Cratomorphus, and Photinus belong to the same subfamily Lampyrinae, and Diaphanes is closely related to Pyrocoelia, Lampyris, and Cratomorphus. Furthemore, the phylogenetic analysis based on the nucleotide sequences of the luciferase gene indicates Diaphanes is a sister to Lampyris. The phylogenetic analyses are partly consistent with morphological (Branham & Wenzel, 2003) and mitochondrial DNA analyses (Li et al, 2006).展开更多
In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green...In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).展开更多
In vivo 3D fluorescent image remains a technological barrier for biologists and clinical scientists although green fluorescent protein(GFP)imaging has long been performed rather well at cellular level.Meanwhile,robust...In vivo 3D fluorescent image remains a technological barrier for biologists and clinical scientists although green fluorescent protein(GFP)imaging has long been performed rather well at cellular level.Meanwhile,robust enough portable devices are also challenging lab-on-a-chip advocators who wish their designs to be nurtured by the end users.This work is dedicated to propose a conceptually innovated transparent soft PDMS avian eggshell to directly tackle the above two goals.Here,an"egg-on-a-chip"scheme is originally developed and demonstrated by a newly developed PDMS"soft"process method.Unlike its ancestor–the conventional"lab-on-a-chip"(LOC)which is basically chemically based,the current"egg-on-a-chip",intrinsically inherited with biological natures,opens a way to integrate biological parts or whole system in a miniature sized device.Such biomimics system contains much condensed environmental evolutional tensor inside than those of the existing LOC compacted with artificial components which however are quite difficult to incorporate various life factors inside.Owning unique advantages,a series of transparent PDMS whole"eggshells"have been fabricated and applied to culture avian embryos up to 17.5 days and chimeric eggshells were engineered on normal eggs.In addition,X-stage embryos were successfully initiated in such system and pre-chorioallantoic membrane was observed.Further,limitation of the present process was interpreted and potential approach to improve it was suggested.With both high optical transparency and engineering subtlety fully integrated together,the present method not only provides an ideal transparent imaging platform for studying functional embryo development including life mystery,but also promises a future strategy for"lab-on-an-egg"technology which may be important in a wide variety of either fundamental or practical areas.展开更多
文摘It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PS II and PS I could be formed in dark-grown lotus (Nelumbo nucifera Gaertn.) seedlings. Lots of evidence were given: First I during the dark-grown period, the single fluorescence emission peak at 679 nm in lotus embryo red-shifted and transformed into the normal PS II fluorescence emission; Simultaneously, PS I fluorescence emission at 730 nm appeared and increased obviously; Second, with partial denaturing SDS-PAGE method, PS I chlorophyll-protein complex could be clearly separated from 10 days dark-grown lotus seedlings; Third, the existence of Lhca1 was also proved by Western blots. Moreover, measurements of electron transfer rate demonstrated that both PS II and PS I core in dark-grown lotus seedlings were photochemically active.
文摘Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, which is the first case from Diaphanes, was identified and sequenced. The luciferase gene from D. pectinealis spans 1958 base pairs (bp) from the start to the stop codon, including seven exons separated by six introns, and encoding a 547-residuelong polypeptide. Its deduced amino acid sequence showed high protein similarity to those of the Lampyrini tribe (93 - 94% ) and the Cratomorphini tribe (92%), while low similarity was found with the North American firefly Photinus pyralis (83%) of the Photinini tribe within the same subfamily Lampyrinae. The phylogenetic analysis performed with the deduced amino acid sequences of the luciferase gene further confirms that D. pectinealis, Pyrocoelia, Lampyris, Cratomorphus, and Photinus belong to the same subfamily Lampyrinae, and Diaphanes is closely related to Pyrocoelia, Lampyris, and Cratomorphus. Furthemore, the phylogenetic analysis based on the nucleotide sequences of the luciferase gene indicates Diaphanes is a sister to Lampyris. The phylogenetic analyses are partly consistent with morphological (Branham & Wenzel, 2003) and mitochondrial DNA analyses (Li et al, 2006).
基金Supported by the Scientific and Technical Supporting Programs of China (2008BAC49B01)the National Natural Science Foundation of China (No. 30830015)
文摘In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).
基金supported by the National Natural Science Foundation of China(Grant No.51376102)
文摘In vivo 3D fluorescent image remains a technological barrier for biologists and clinical scientists although green fluorescent protein(GFP)imaging has long been performed rather well at cellular level.Meanwhile,robust enough portable devices are also challenging lab-on-a-chip advocators who wish their designs to be nurtured by the end users.This work is dedicated to propose a conceptually innovated transparent soft PDMS avian eggshell to directly tackle the above two goals.Here,an"egg-on-a-chip"scheme is originally developed and demonstrated by a newly developed PDMS"soft"process method.Unlike its ancestor–the conventional"lab-on-a-chip"(LOC)which is basically chemically based,the current"egg-on-a-chip",intrinsically inherited with biological natures,opens a way to integrate biological parts or whole system in a miniature sized device.Such biomimics system contains much condensed environmental evolutional tensor inside than those of the existing LOC compacted with artificial components which however are quite difficult to incorporate various life factors inside.Owning unique advantages,a series of transparent PDMS whole"eggshells"have been fabricated and applied to culture avian embryos up to 17.5 days and chimeric eggshells were engineered on normal eggs.In addition,X-stage embryos were successfully initiated in such system and pre-chorioallantoic membrane was observed.Further,limitation of the present process was interpreted and potential approach to improve it was suggested.With both high optical transparency and engineering subtlety fully integrated together,the present method not only provides an ideal transparent imaging platform for studying functional embryo development including life mystery,but also promises a future strategy for"lab-on-an-egg"technology which may be important in a wide variety of either fundamental or practical areas.