Supercontinuum(SC) generation in a dispersion-shifted fiber(DSF) pumped by a 10 GHz regeneratively mode-locked fiber laser(RMLFL) is presented.Optimization of pump wavelength leads to a 20 dB bandwidth of 58.73 nm,whi...Supercontinuum(SC) generation in a dispersion-shifted fiber(DSF) pumped by a 10 GHz regeneratively mode-locked fiber laser(RMLFL) is presented.Optimization of pump wavelength leads to a 20 dB bandwidth of 58.73 nm,which covers the whole C band and part of L band.Using an angle-tuning thin film filter,multi-wavelength and pico-second pulse trains of low chirp could be chosen from the SC spectrum.Amplified spontaneous emission(ASE) induced degeneration of the achieved pulse trains is observed and discussed.展开更多
An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) imm...An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) immobilized in a plasticized poly(vinyl chloride) (PVC) membrane. The optimum membrane of the sensor consists of 100 mg of PVC, 200 mg of bis (2-ethytbexyl) sebacate (BOS) and 3.0 mg of LiTOE. The maximum response of the optode membrane for iodine is obtained in Tris-HCl buffer solutlon (pH 8.0). With the optimum conditions described, the proposed sensor responds linearly in the measuring range of 3.90×10^-2 to 3.90×10^-4 mol/L, and has a detection limit of 6.0×10^-8 mol/L. The response time of the sensor is less than I rain. In addition to high reproducibility and reversibility of the fluorescence signal, the sensor also exhibits good selectivity. It is not interfered by some common anions and cations. It is applied for the determination of iodine in table salt samples. The results agree with those obtained by another method.展开更多
A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity.This simulation and calculation results show that the bismuth-oxide photonic crystal fiber(Bi-PCF) has...A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity.This simulation and calculation results show that the bismuth-oxide photonic crystal fiber(Bi-PCF) has near zero dispersion around 1550 nm.Its dispersion slop in the communication wavelength range is also relatively flat.Moreover,both nonlinear coefficient and model field distribution are obtained.Compared with the experimental results by SiO2-PCF,it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification(OPA).展开更多
Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized...Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.展开更多
基金Supperted by National Natural Science Foundation of China(No.60477022)
文摘Supercontinuum(SC) generation in a dispersion-shifted fiber(DSF) pumped by a 10 GHz regeneratively mode-locked fiber laser(RMLFL) is presented.Optimization of pump wavelength leads to a 20 dB bandwidth of 58.73 nm,which covers the whole C band and part of L band.Using an angle-tuning thin film filter,multi-wavelength and pico-second pulse trains of low chirp could be chosen from the SC spectrum.Amplified spontaneous emission(ASE) induced degeneration of the achieved pulse trains is observed and discussed.
文摘An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) immobilized in a plasticized poly(vinyl chloride) (PVC) membrane. The optimum membrane of the sensor consists of 100 mg of PVC, 200 mg of bis (2-ethytbexyl) sebacate (BOS) and 3.0 mg of LiTOE. The maximum response of the optode membrane for iodine is obtained in Tris-HCl buffer solutlon (pH 8.0). With the optimum conditions described, the proposed sensor responds linearly in the measuring range of 3.90×10^-2 to 3.90×10^-4 mol/L, and has a detection limit of 6.0×10^-8 mol/L. The response time of the sensor is less than I rain. In addition to high reproducibility and reversibility of the fluorescence signal, the sensor also exhibits good selectivity. It is not interfered by some common anions and cations. It is applied for the determination of iodine in table salt samples. The results agree with those obtained by another method.
基金supported by the"973" Project of China (No.2010CB328300)
文摘A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity.This simulation and calculation results show that the bismuth-oxide photonic crystal fiber(Bi-PCF) has near zero dispersion around 1550 nm.Its dispersion slop in the communication wavelength range is also relatively flat.Moreover,both nonlinear coefficient and model field distribution are obtained.Compared with the experimental results by SiO2-PCF,it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification(OPA).
基金supported by the National Natural Science Foundation of China(Grant Nos.91123018,61172041,61172040,50975226,and 60801022)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA03A314)the Fundamental Research Funds for the Central Universities
文摘Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.