The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber(TIRPCF) in Compton scattering have been studied by using the model of the equivalent twin waveguide soliton ...The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber(TIRPCF) in Compton scattering have been studied by using the model of the equivalent twin waveguide soliton coupling, dispersion management solitons and effective refractive index. It is shown that the positive dispersion of the cladding waveguide of TIRPCF and the negative dispersion of its core waveguide are quickly increased by the square of the collision non-elastic composition between the electron and photons, and they are lessened by the increase of the electron absorption photon number. Under the one-photon nonlinear Compton scattering, the method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of TIRPCF to be close to zero, and the zero dispersion point quickly shifts to the short wavelength region.展开更多
Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a ...Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a constant energy increase,the maximum intensity decreases,and the half width at e-2 of the maximum intensity becomes wider.Diffraction efficiency has no deterioration for the blazed grating with a proper groove shape even when the incident light contains a broad range of wavelengths and comes from a wide range of angles.展开更多
By a simple one-step H2-assisted thermal evaporation method, high quality CdS nanos- tructures have been successfully fabricated on Au coated Si substrates in large scale. The as-synthesized CdS nanostructures consist...By a simple one-step H2-assisted thermal evaporation method, high quality CdS nanos- tructures have been successfully fabricated on Au coated Si substrates in large scale. The as-synthesized CdS nanostructures consisted of sword-like nanobelts and toothed nanosaws with a single-crystal hexagonal wurtzite structure. The deposition temperature played an important role in determining the size and morphology of the CdS nanostruetures. A combination of vapor-liquid-solid and vapor-solid growth mechanisms were proposed to interpret the formation of CdS nanostructures. Photoluminescence measurement indicated that the nanobelts and nanosaws have a prominent green emission at about 512 nm, which is the band-to-band emission of CdS. The waveguide characteristics of both types of CdS nanos-truetures were observed and discussed.展开更多
Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source....Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source. The experiment of the emission and excitation optical spectrum, decay curve of fluorescence and residuals for several sensitive materials confirms the match of Y2O2S:Eu using the light source and the feasibility of the system. The rare earth material Y2O2S:Eu is selected as the material candidate for being the most sensitive.展开更多
Based on the effective-mass approximation and variational approach, excitonic optical properties are investigated theoretically in strained wurtzite (WZ) ZnO/MgxZn1-xO cylindrical quantum dots (QDs) for four diffe...Based on the effective-mass approximation and variational approach, excitonic optical properties are investigated theoretically in strained wurtzite (WZ) ZnO/MgxZn1-xO cylindrical quantum dots (QDs) for four different Mg compositions: x = 0.08, 0.14, 0.25, and 0.33, with considering a three-dimensional carrier confinement in QDs and a strong built-in electric field effect due to the piezoelectricity and spontaneous polarization. The ground-state exciton binding energy, the interband emission wavelength, and the radiative lifetime as functions of the QD structural parameters (height and radius) are calculated in detail The computations are performed in the case of finite band offset. Numerical results elucidate that Mg composition has of ZnO/MgxZn1-x 0 QDs. The ground-state exciton a significant influence on the exciton states and optical properties binding energy increases with increasing Mg composition and the increment tendency is more prominent for small height QDs. As Mg composition increases, the interband emission wavelength has a blue-shift if the dot height L 〈 3.5 nm, but the interband emission wavelength has a red-shift when L 〉 3.5 nm. Furthermore, the radiative lifetime increases rapidly with increasing Mg composition if the dot height L 〉 3 nm and the increment tendency is more prominent for large height QDs. The physical reason has been analyzed in depth.展开更多
Er3+/Ce3+ co-doped tellurite-based glasses with composition of TeO2-ZnO-Na2O are prepared by high- temperature melt-quenching technique. Effects of Ce2O3 content on the 1.53 μm band fluorescence spectra and fluores...Er3+/Ce3+ co-doped tellurite-based glasses with composition of TeO2-ZnO-Na2O are prepared by high- temperature melt-quenching technique. Effects of Ce2O3 content on the 1.53 μm band fluorescence spectra and fluorescence lifetime of Er3+ are measured and investigated. It is found that the tellurite glass containing Ce203 with molar concentration of 0.25% exhibits an increment of 13% in 1.53 μm fluorescence intensity and an increment of 15% in the 4I13/2 level lifetime. The results indicate that the prepared tellurite-based glass with a suitable Er3+/Ce3+ codoping concentration is an excellent gain medium applied for broadband Er3+-doped fiber amplifier (EDFA) pumped with a 980 nm laser diode.展开更多
文摘The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber(TIRPCF) in Compton scattering have been studied by using the model of the equivalent twin waveguide soliton coupling, dispersion management solitons and effective refractive index. It is shown that the positive dispersion of the cladding waveguide of TIRPCF and the negative dispersion of its core waveguide are quickly increased by the square of the collision non-elastic composition between the electron and photons, and they are lessened by the increase of the electron absorption photon number. Under the one-photon nonlinear Compton scattering, the method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of TIRPCF to be close to zero, and the zero dispersion point quickly shifts to the short wavelength region.
基金Key Technologies R&D Programme of Hubei Province(2005AA101B10)
文摘Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a constant energy increase,the maximum intensity decreases,and the half width at e-2 of the maximum intensity becomes wider.Diffraction efficiency has no deterioration for the blazed grating with a proper groove shape even when the incident light contains a broad range of wavelengths and comes from a wide range of angles.
文摘By a simple one-step H2-assisted thermal evaporation method, high quality CdS nanos- tructures have been successfully fabricated on Au coated Si substrates in large scale. The as-synthesized CdS nanostructures consisted of sword-like nanobelts and toothed nanosaws with a single-crystal hexagonal wurtzite structure. The deposition temperature played an important role in determining the size and morphology of the CdS nanostruetures. A combination of vapor-liquid-solid and vapor-solid growth mechanisms were proposed to interpret the formation of CdS nanostructures. Photoluminescence measurement indicated that the nanobelts and nanosaws have a prominent green emission at about 512 nm, which is the band-to-band emission of CdS. The waveguide characteristics of both types of CdS nanos-truetures were observed and discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50775198, 60102002, 60974115 and 60977061)the Youth Foundation of Education Bureau of Hebei Province (Grant No.2011225)
文摘Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source. The experiment of the emission and excitation optical spectrum, decay curve of fluorescence and residuals for several sensitive materials confirms the match of Y2O2S:Eu using the light source and the feasibility of the system. The rare earth material Y2O2S:Eu is selected as the material candidate for being the most sensitive.
基金Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No. 11102100
文摘Based on the effective-mass approximation and variational approach, excitonic optical properties are investigated theoretically in strained wurtzite (WZ) ZnO/MgxZn1-xO cylindrical quantum dots (QDs) for four different Mg compositions: x = 0.08, 0.14, 0.25, and 0.33, with considering a three-dimensional carrier confinement in QDs and a strong built-in electric field effect due to the piezoelectricity and spontaneous polarization. The ground-state exciton binding energy, the interband emission wavelength, and the radiative lifetime as functions of the QD structural parameters (height and radius) are calculated in detail The computations are performed in the case of finite band offset. Numerical results elucidate that Mg composition has of ZnO/MgxZn1-x 0 QDs. The ground-state exciton a significant influence on the exciton states and optical properties binding energy increases with increasing Mg composition and the increment tendency is more prominent for small height QDs. As Mg composition increases, the interband emission wavelength has a blue-shift if the dot height L 〈 3.5 nm, but the interband emission wavelength has a red-shift when L 〉 3.5 nm. Furthermore, the radiative lifetime increases rapidly with increasing Mg composition if the dot height L 〉 3 nm and the increment tendency is more prominent for large height QDs. The physical reason has been analyzed in depth.
基金supported by the National Natural Science Foundation of China(No.61178063)the Scientific Research Foundation of Graduate School of Ningbo University(No.G13035)
文摘Er3+/Ce3+ co-doped tellurite-based glasses with composition of TeO2-ZnO-Na2O are prepared by high- temperature melt-quenching technique. Effects of Ce2O3 content on the 1.53 μm band fluorescence spectra and fluorescence lifetime of Er3+ are measured and investigated. It is found that the tellurite glass containing Ce203 with molar concentration of 0.25% exhibits an increment of 13% in 1.53 μm fluorescence intensity and an increment of 15% in the 4I13/2 level lifetime. The results indicate that the prepared tellurite-based glass with a suitable Er3+/Ce3+ codoping concentration is an excellent gain medium applied for broadband Er3+-doped fiber amplifier (EDFA) pumped with a 980 nm laser diode.