The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from...The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.展开更多
A theoretical model in the 1900 nm waveband for amplified spontaneous emission (ASE) of thulium-doped silica fiber is presented. The ASE spectral power as functions of the fiber length and the pump power is investigat...A theoretical model in the 1900 nm waveband for amplified spontaneous emission (ASE) of thulium-doped silica fiber is presented. The ASE spectral power as functions of the fiber length and the pump power is investigated by solving the rate and propagation equations. By calculation, when the concentration of thulium in fiber is 2.25×1025 m-3, the fiber core diameter is 2.6 μm, and the pump power is 200 mW at 808 nm, the optimal fiber length is 8.1 m, and the output power of ASE can reach 60 mW in the range of 1800-1950 nm with this fiber length. The optical-to-optical conversion is 30.3%. The optimal pump power also can be obtained by this model.展开更多
文摘The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.
基金supported by the National Natural Science Foundation of China (No.60677027)Research Fund for the Doctoral Program of Higher Education of China (No.20060422025)+2 种基金Natural Science Foundation of Shandong Province of China (No.2006ZRC01022)Science Fund for Distinguished Young Scholars of Shandong Province of China (No.2008JQB01155)Research Award Fund for Outstanding Middle-aged and Young Scientist of Shandong Province of China (No.2007BS08003)
文摘A theoretical model in the 1900 nm waveband for amplified spontaneous emission (ASE) of thulium-doped silica fiber is presented. The ASE spectral power as functions of the fiber length and the pump power is investigated by solving the rate and propagation equations. By calculation, when the concentration of thulium in fiber is 2.25×1025 m-3, the fiber core diameter is 2.6 μm, and the pump power is 200 mW at 808 nm, the optimal fiber length is 8.1 m, and the output power of ASE can reach 60 mW in the range of 1800-1950 nm with this fiber length. The optical-to-optical conversion is 30.3%. The optimal pump power also can be obtained by this model.