Designed is dispersion-flattened photonic crystal fiber(PCF) with small normal dispersion for generating flat wideband supercontinuum (SC), and demonstrated is spectrally sliced pulse source which utilizes supereo...Designed is dispersion-flattened photonic crystal fiber(PCF) with small normal dispersion for generating flat wideband supercontinuum (SC), and demonstrated is spectrally sliced pulse source which utilizes supereontinuum generated in dispersion-flattened photonic crystal fiber. The results show that the fiber characterized by flattened dispersion with small normal dispersion is suitable for flat wideband supercontinuum generation. In the process of spectral broadening, self-phase modulation plays a dominant role. By filtering the supercontinuum, multi-wavelength pulses can be obtained over a wide spectral range.展开更多
The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where...The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.展开更多
Multiple access techniques are required to meet the demand for high-speed and large-capacity commtmications in optical networks, which allow multiple users to share the fiber bandwidth. O-CDMA (optical code-division ...Multiple access techniques are required to meet the demand for high-speed and large-capacity commtmications in optical networks, which allow multiple users to share the fiber bandwidth. O-CDMA (optical code-division multiple-access) is receiving increased attention due to its potential apphcations for LAN optical networks. O-CDMA is attractive for next generation broadband access networks due to its features of allowing fully asynchronous transmission with low latency access, soft capacity on demand, protocol transparency, simplified network management as well as increased flexibility of QoS (Quality of Service) control and enhanced confidentiahty in the network. Hence, the authors experimentally investigate an ultra short pulse O-CDMA scheme based on spectral phase encoding and decoding of coherent mode-locked laser pulses, they proposed a technique using spectral phase encoding time domain system for 32 users. This technique is proved to be much effective to handle 32 users at 4 Gb/s bit rate and 60 km SMF (single mode fiber) transmission used for SPE O-CDMA system. Results indicate significant improvement in term low BER (beat error rate) and very high quality factor in the form of QoS. The authors have used PSO (pseudo orthogonal) codes and random phase code. The simulations are carried out using OptSim (RSOFT).展开更多
The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The ...The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.展开更多
基金National Basic Research Program of China(2003CB314906)Foundation for Key Program of Ministry of Education, China(104046)
文摘Designed is dispersion-flattened photonic crystal fiber(PCF) with small normal dispersion for generating flat wideband supercontinuum (SC), and demonstrated is spectrally sliced pulse source which utilizes supereontinuum generated in dispersion-flattened photonic crystal fiber. The results show that the fiber characterized by flattened dispersion with small normal dispersion is suitable for flat wideband supercontinuum generation. In the process of spectral broadening, self-phase modulation plays a dominant role. By filtering the supercontinuum, multi-wavelength pulses can be obtained over a wide spectral range.
基金supported in part by National 973 Program(2012CB315705)NSFC Program(61302086,61271042,61107058, 61302016,and 61335002)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20130005120007)Program for New Century Excellent Talents in University(NCET-13-0682)Fundamental Research Funds for the Central Universities
文摘The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.
文摘Multiple access techniques are required to meet the demand for high-speed and large-capacity commtmications in optical networks, which allow multiple users to share the fiber bandwidth. O-CDMA (optical code-division multiple-access) is receiving increased attention due to its potential apphcations for LAN optical networks. O-CDMA is attractive for next generation broadband access networks due to its features of allowing fully asynchronous transmission with low latency access, soft capacity on demand, protocol transparency, simplified network management as well as increased flexibility of QoS (Quality of Service) control and enhanced confidentiahty in the network. Hence, the authors experimentally investigate an ultra short pulse O-CDMA scheme based on spectral phase encoding and decoding of coherent mode-locked laser pulses, they proposed a technique using spectral phase encoding time domain system for 32 users. This technique is proved to be much effective to handle 32 users at 4 Gb/s bit rate and 60 km SMF (single mode fiber) transmission used for SPE O-CDMA system. Results indicate significant improvement in term low BER (beat error rate) and very high quality factor in the form of QoS. The authors have used PSO (pseudo orthogonal) codes and random phase code. The simulations are carried out using OptSim (RSOFT).
文摘The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.