荧光寿命的检测是荧光光学传感器的核心内容,国际上尝试了多种方法来拟合这种理论上为单指数衰减信号的荧光衰减曲线。这些方法包括非线性函数标准拟合方法,即Leven burg Marquardt方法,以及Prony方法、FFT方法,对数拟合法等等。为了克...荧光寿命的检测是荧光光学传感器的核心内容,国际上尝试了多种方法来拟合这种理论上为单指数衰减信号的荧光衰减曲线。这些方法包括非线性函数标准拟合方法,即Leven burg Marquardt方法,以及Prony方法、FFT方法,对数拟合法等等。为了克服在实际应用中发生的信号退化,需要在测量信号衰减寿命的同时测量信号的初始强度。文章介绍了一种加权的对数拟合法,经计算机仿真及实际数据测试均可以得到和Levenburg Marquardt方法非常接近的结果,且拟合时间大大缩短,测量稳定性大大提高。仿真测试及具体实验测试结果显示了这种方法的有效性。该方法不仅与Levenburg Marquardt方法的偏差曲线非常相似,而且实验测得的荧光寿命与Levenburg Marquardt方法偏差在0.2%以内。展开更多
An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) imm...An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) immobilized in a plasticized poly(vinyl chloride) (PVC) membrane. The optimum membrane of the sensor consists of 100 mg of PVC, 200 mg of bis (2-ethytbexyl) sebacate (BOS) and 3.0 mg of LiTOE. The maximum response of the optode membrane for iodine is obtained in Tris-HCl buffer solutlon (pH 8.0). With the optimum conditions described, the proposed sensor responds linearly in the measuring range of 3.90×10^-2 to 3.90×10^-4 mol/L, and has a detection limit of 6.0×10^-8 mol/L. The response time of the sensor is less than I rain. In addition to high reproducibility and reversibility of the fluorescence signal, the sensor also exhibits good selectivity. It is not interfered by some common anions and cations. It is applied for the determination of iodine in table salt samples. The results agree with those obtained by another method.展开更多
文摘An optical chemical sensor has been developed for the determination of iodine based on the reversible fluorescence quenching of 2, 2, 7, 7, 12, 12, 17, 17-octamethyl-21, 22, 23, 24-tetraoxaquaterene-Li (LiTOE) immobilized in a plasticized poly(vinyl chloride) (PVC) membrane. The optimum membrane of the sensor consists of 100 mg of PVC, 200 mg of bis (2-ethytbexyl) sebacate (BOS) and 3.0 mg of LiTOE. The maximum response of the optode membrane for iodine is obtained in Tris-HCl buffer solutlon (pH 8.0). With the optimum conditions described, the proposed sensor responds linearly in the measuring range of 3.90×10^-2 to 3.90×10^-4 mol/L, and has a detection limit of 6.0×10^-8 mol/L. The response time of the sensor is less than I rain. In addition to high reproducibility and reversibility of the fluorescence signal, the sensor also exhibits good selectivity. It is not interfered by some common anions and cations. It is applied for the determination of iodine in table salt samples. The results agree with those obtained by another method.