A new high nonlinear dispersion flattened photonic crystal fiber is proposed. This fiber has three-fold symmetry core. The doped region in the core and the big air-holes in the 1-st ring can make high nonlinearity in ...A new high nonlinear dispersion flattened photonic crystal fiber is proposed. This fiber has three-fold symmetry core. The doped region in the core and the big air-holes in the 1-st ring can make high nonlinearity in the PCF. And the small air-holes in the 1-st ring and the radial increasing diameters air-holes rings in cladding can be used to turn the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCF's structure parameters. A PCF with flattened dispersion is obtained. The dispersion is within ±0.8 ps·nm-1·km-1 from 1.50 μm to 1.62 μm. The nonlinear coefficient is about 12.645 6 W-1·km-1, the fundamental mode area is about 10.257 9 μm2 and the birefringence is about 3.086 96×10-5 at 1.55 μm. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal with high nonlinearities.展开更多
In dense wavelength division multiplexing(DWDM) optical transmission systems, cross phase modulation(XPM) due to Kerr effect causes phase shift and intensity modulation in each channel, which will lead the channel cap...In dense wavelength division multiplexing(DWDM) optical transmission systems, cross phase modulation(XPM) due to Kerr effect causes phase shift and intensity modulation in each channel, which will lead the channel capacity to be a random variable. An expression of the channel capacity dealing with XPM effect is presented, and the correctness and accuracy of this method are demonstrated by numerical simulation.展开更多
The mechanism of γ-ray radiation induced absorption loss of the optical fiber in visible range is analyzed. According to the mechanism, the quantitative relation between loss in optical fiber and γ-ray cumulation do...The mechanism of γ-ray radiation induced absorption loss of the optical fiber in visible range is analyzed. According to the mechanism, the quantitative relation between loss in optical fiber and γ-ray cumulation dose is found by use of methods of solid physics and statistic physics. This quantitative relation is certified in terms of the results of radiation experiment.展开更多
The propagation and transformation of an elliptic Gaussian optical beam(EGB) passing through a Kerr-law nonlinear conical graded-index rod lens are presented.In the rod lens, the EGB is treated as two dependent optica...The propagation and transformation of an elliptic Gaussian optical beam(EGB) passing through a Kerr-law nonlinear conical graded-index rod lens are presented.In the rod lens, the EGB is treated as two dependent optical beams.The dimensionless beam-width parameters and the inverses of the curvature radii for the wavefront of the two beams are given semi-analytically,and the transformations of the EGB with the rod lens are derived by use of the ABCD law of Gaussian optical beam.展开更多
Dispersion and nonlinear distortion have an effect on transmission performanc es of optic al fiber transimission systems. The schemes of dispersion compensation and nonli near distortion self-compens ation in telecom-...Dispersion and nonlinear distortion have an effect on transmission performanc es of optic al fiber transimission systems. The schemes of dispersion compensation and nonli near distortion self-compens ation in telecom-CATV co-network transmission systems are reported, followed by investigation on (1) the impact of dispersion compensation fiber (DCF) on fi ber nonlinear effects with a cascade of erbium-doped fiber amplifiers (EDFAs) an d different dispersion compensation schemes, (2) the impact of the complex on th e total nonlinear distortion induced by EDFA gain tilt and the light source. As a result , dispersion compensation optimal scheme and EDFA negative gain tilt are suggest ed as a solution to dispersion compensation and the nonlinear distortion self-c ompensation.展开更多
A novel tunable chirped fiber Bragg grating technology is proposed and simulated numerically by Matlab. If we adhere a uniform fiber grating with super magnetostrictive film and expose them in a non-uniform magnetic f...A novel tunable chirped fiber Bragg grating technology is proposed and simulated numerically by Matlab. If we adhere a uniform fiber grating with super magnetostrictive film and expose them in a non-uniform magnetic field, the period of the grating can be changed with the strain imposed on it by the magnetostrictive effect .The chirped characteristics can be tuned by changing the magnetic filed which is very flexible in designing.展开更多
We show that the nonlinear equation governing wave propagation in a loss fibre system considered by Nakkeeran in J. Phys. A 34 (2001) 5111 can be brought into the standard nonlinear Schr?dinger equation by a simple tr...We show that the nonlinear equation governing wave propagation in a loss fibre system considered by Nakkeeran in J. Phys. A 34 (2001) 5111 can be brought into the standard nonlinear Schr?dinger equation by a simple transformation.展开更多
Driven by ZTE and other telecom vendors and operators in order to meet the ever increasing bandwidth demand from fixed optical network users and mobile backhaul/fronthaul services, the latest next generation passive o...Driven by ZTE and other telecom vendors and operators in order to meet the ever increasing bandwidth demand from fixed optical network users and mobile backhaul/fronthaul services, the latest next generation passive optical network (NG- PON2) is being standardized by Full Service Access Network (FSAN) and International Telecommunication Union (ITU-T) which consists of two separated sub-systems, hybrid time- and wavelength-division multiplexing PON (TWDM-PON) and point-to-point wavelength- division multiplex (PtP WDM). The TWDM-PON will be used for traditional residential, business and wireless backhaul services which are not sensitive to time delay and delay variation, whereas the PtP WDM is mainly used for emerging wireless fronthaul service which is very sensitive to the time delay and time delay variation. However, as a main international standards' contributor, ZTE thinks for those operators who offer multiple-level of services to both residential, business and mobile backhaul/fronthaul users, this obviously raises significant economic and power concerns by demanding to deploy two separated systems. Therefore, in this paper, for the first time, ZTE proposes a new converged optical and wireless integrated network architecture and topology by applying orthogonal frequency division multiplexing(OFDM) PON technology, which is able to simultaneously support residential, business and mobile backhaul/fronthaul services in terms of meeting the requirements of both time delay sensitive and non-sensitive services, and also address the economic and power concerns compared with conventional technologies. This architecture is further investigated and analyzed in depth on functional block, Quality-of-service (QoS), synchronization and deployment considerations. Also ZTE reports in this paper the first 40Gbps OFDM- PON prototype in which eight wavelengths each with 5Gbps Ethernet data via 10G-PON encapsulation method (X-GEM) and 10G-PON transmission convergence (X-GTC) framing are demonstrated.展开更多
A 20-node fiber-grating-based wireless sensor network is proposed and experimentally demonstrated. Each sensor node is integrated with the light source, 1-3 FBG sensing probes, wavelength demodulation, and wireless co...A 20-node fiber-grating-based wireless sensor network is proposed and experimentally demonstrated. Each sensor node is integrated with the light source, 1-3 FBG sensing probes, wavelength demodulation, and wireless communication module. Via self-organized clusters and low energy adaptive clustering hierarchy (LEACH) route protocols, the sensor nodes are able to exchange sensing data with the control center, and the maximum communication radius of a sensor node is over 170m. The sensor node is battery-powered with a survival lifetime of up to 120 days at a network refresh rate of 5 minutes.展开更多
基金National Basic Research Program of China(973 Program)(2003CB314907) National Science Foundation ofCouncil of China(90604026 ,60310174) Postdoctoral Science Foundation of China(20060400059)
文摘A new high nonlinear dispersion flattened photonic crystal fiber is proposed. This fiber has three-fold symmetry core. The doped region in the core and the big air-holes in the 1-st ring can make high nonlinearity in the PCF. And the small air-holes in the 1-st ring and the radial increasing diameters air-holes rings in cladding can be used to turn the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCF's structure parameters. A PCF with flattened dispersion is obtained. The dispersion is within ±0.8 ps·nm-1·km-1 from 1.50 μm to 1.62 μm. The nonlinear coefficient is about 12.645 6 W-1·km-1, the fundamental mode area is about 10.257 9 μm2 and the birefringence is about 3.086 96×10-5 at 1.55 μm. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal with high nonlinearities.
文摘In dense wavelength division multiplexing(DWDM) optical transmission systems, cross phase modulation(XPM) due to Kerr effect causes phase shift and intensity modulation in each channel, which will lead the channel capacity to be a random variable. An expression of the channel capacity dealing with XPM effect is presented, and the correctness and accuracy of this method are demonstrated by numerical simulation.
文摘The mechanism of γ-ray radiation induced absorption loss of the optical fiber in visible range is analyzed. According to the mechanism, the quantitative relation between loss in optical fiber and γ-ray cumulation dose is found by use of methods of solid physics and statistic physics. This quantitative relation is certified in terms of the results of radiation experiment.
文摘The propagation and transformation of an elliptic Gaussian optical beam(EGB) passing through a Kerr-law nonlinear conical graded-index rod lens are presented.In the rod lens, the EGB is treated as two dependent optical beams.The dimensionless beam-width parameters and the inverses of the curvature radii for the wavefront of the two beams are given semi-analytically,and the transformations of the EGB with the rod lens are derived by use of the ABCD law of Gaussian optical beam.
文摘Dispersion and nonlinear distortion have an effect on transmission performanc es of optic al fiber transimission systems. The schemes of dispersion compensation and nonli near distortion self-compens ation in telecom-CATV co-network transmission systems are reported, followed by investigation on (1) the impact of dispersion compensation fiber (DCF) on fi ber nonlinear effects with a cascade of erbium-doped fiber amplifiers (EDFAs) an d different dispersion compensation schemes, (2) the impact of the complex on th e total nonlinear distortion induced by EDFA gain tilt and the light source. As a result , dispersion compensation optimal scheme and EDFA negative gain tilt are suggest ed as a solution to dispersion compensation and the nonlinear distortion self-c ompensation.
文摘A novel tunable chirped fiber Bragg grating technology is proposed and simulated numerically by Matlab. If we adhere a uniform fiber grating with super magnetostrictive film and expose them in a non-uniform magnetic field, the period of the grating can be changed with the strain imposed on it by the magnetostrictive effect .The chirped characteristics can be tuned by changing the magnetic filed which is very flexible in designing.
文摘We show that the nonlinear equation governing wave propagation in a loss fibre system considered by Nakkeeran in J. Phys. A 34 (2001) 5111 can be brought into the standard nonlinear Schr?dinger equation by a simple transformation.
基金financially supported by National Hi-tech Research and Development Program of China (863 Program, No. 2011AA01A106)
文摘Driven by ZTE and other telecom vendors and operators in order to meet the ever increasing bandwidth demand from fixed optical network users and mobile backhaul/fronthaul services, the latest next generation passive optical network (NG- PON2) is being standardized by Full Service Access Network (FSAN) and International Telecommunication Union (ITU-T) which consists of two separated sub-systems, hybrid time- and wavelength-division multiplexing PON (TWDM-PON) and point-to-point wavelength- division multiplex (PtP WDM). The TWDM-PON will be used for traditional residential, business and wireless backhaul services which are not sensitive to time delay and delay variation, whereas the PtP WDM is mainly used for emerging wireless fronthaul service which is very sensitive to the time delay and time delay variation. However, as a main international standards' contributor, ZTE thinks for those operators who offer multiple-level of services to both residential, business and mobile backhaul/fronthaul users, this obviously raises significant economic and power concerns by demanding to deploy two separated systems. Therefore, in this paper, for the first time, ZTE proposes a new converged optical and wireless integrated network architecture and topology by applying orthogonal frequency division multiplexing(OFDM) PON technology, which is able to simultaneously support residential, business and mobile backhaul/fronthaul services in terms of meeting the requirements of both time delay sensitive and non-sensitive services, and also address the economic and power concerns compared with conventional technologies. This architecture is further investigated and analyzed in depth on functional block, Quality-of-service (QoS), synchronization and deployment considerations. Also ZTE reports in this paper the first 40Gbps OFDM- PON prototype in which eight wavelengths each with 5Gbps Ethernet data via 10G-PON encapsulation method (X-GEM) and 10G-PON transmission convergence (X-GTC) framing are demonstrated.
文摘A 20-node fiber-grating-based wireless sensor network is proposed and experimentally demonstrated. Each sensor node is integrated with the light source, 1-3 FBG sensing probes, wavelength demodulation, and wireless communication module. Via self-organized clusters and low energy adaptive clustering hierarchy (LEACH) route protocols, the sensor nodes are able to exchange sensing data with the control center, and the maximum communication radius of a sensor node is over 170m. The sensor node is battery-powered with a survival lifetime of up to 120 days at a network refresh rate of 5 minutes.