The operation principle of a new type of intensity modulate macrobend curvature optical fiber senor was presented based on surface light scattering theory. Sensor's static and dynamic performance was investigated....The operation principle of a new type of intensity modulate macrobend curvature optical fiber senor was presented based on surface light scattering theory. Sensor's static and dynamic performance was investigated. This type of sensor can distinguish between positive and negative bending directions. When curvature radius is larger than 50mm, the sensor will keep good linearity. Two-dimensional shape measurement experiments using curvature sensors have been implemented.展开更多
Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c...Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.展开更多
The electron movement based on the multi-photon nonlinear Compton scattering with the extra-intense stationary laser field is discussed by using KMR (Kroll-Morton-Rosenbluth) theory.We find that there exists only an e...The electron movement based on the multi-photon nonlinear Compton scattering with the extra-intense stationary laser field is discussed by using KMR (Kroll-Morton-Rosenbluth) theory.We find that there exists only an evolution from periodicity to non-periodicity of the un-captured electron phase orbits after the energy exchange between the electron beam and laser fields.With the increase of the absorbed photon number n by an electron, this evolution will be more and more faster, while it is rapidly decreased with the enhancement of the collision non-flexibility ξ of the electrons and photons; When the electrons are captured by the laser fields, the evolution is finished, the electrons will stably transport,and the photons dont give up the energy to these electrons.展开更多
After considering Kerr nonlinear effect, group velocity dispersion of host and gain distribution of active particle in laser amplifying medium, a basic equation describing propagation of the coupling optical pulse und...After considering Kerr nonlinear effect, group velocity dispersion of host and gain distribution of active particle in laser amplifying medium, a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides, the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.展开更多
Raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≈120 ps Nd: YAG laser at 1.064/μm were developed. High reflection mirrors for the Stokes wavelength have been used to gener...Raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≈120 ps Nd: YAG laser at 1.064/μm were developed. High reflection mirrors for the Stokes wavelength have been used to generate near-infrared and eye safe spectral region of 1.15 - 1.32/μm. Second harmonic generation of the generated Raman lasers was observed. Eifficient multiple Stokes and anti-Stokes picosecond generation in 64 crystals have been shown to exhibit stimulated Raman scattering on about 700 lines covering the whole visible and near-infrared spectrum. All stimulated Raman scattering (SRS) wavelengths in the visible and near-infrared spectrum are identified and attributed to the SRS-active vibration modes of these crystals.展开更多
The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-c...The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons,but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field,the evolution is finished,and the electrons will stably transport,and the photons don’t provide the energy for these electrons any more.展开更多
A comparison is made of the intensity distribution of the horizontally and vertically polarized radiation sidescattered from small spherical particles in a cylindrical scattering volume.The incident radiation is a nea...A comparison is made of the intensity distribution of the horizontally and vertically polarized radiation sidescattered from small spherical particles in a cylindrical scattering volume.The incident radiation is a nearly collimated linearly polarized He-Ne laser beam.The scattering medium consists of various concentrations of particles which are either 0.22 μm or 0.494 μm in diameter and which were suspended in filtered,distilled water.In general,the effect of the diameter of the particle on depolari-zing the incident beam is more important than the particle concentration,detector depth,and so on.展开更多
In a rotating noninertial frame, we investigate the eigenstates of the time-dependent problem for electronnucleus scattering assisted by a circularly polarized laser field. Numerical results of probability distributio...In a rotating noninertial frame, we investigate the eigenstates of the time-dependent problem for electronnucleus scattering assisted by a circularly polarized laser field. Numerical results of probability distribution, quantum potential, and current density are discussed. An approximate expression of scattering cross section for low laser frequency is given.展开更多
Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause haza...Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause hazardous impact on environment.In this research work,partial replacement of silica sand(SS)and fine sand(FS)by SSP with different contents(25%and 50%each)for making engineered cementitious composite has been explored.The performance was evaluated on the basis of strength,tensile strain,mid span deflection capacity,ultra-sonic pulse velocity and microstructure.Mechanical strength was found to be increased at 25%SSP in both replacements;whereas,strength decreased slightly at 50%replacement.Tensile strain,mid span deflection and quality of concrete were enhanced with increase in SSP content.Using SSP formed denser cementitious composite can help to save the natural resources and contribute in making green cementitious composite.展开更多
Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half m...Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half maximum, with an electron of γ0 = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.展开更多
Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not mee...Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry(EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time(within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.展开更多
文摘The operation principle of a new type of intensity modulate macrobend curvature optical fiber senor was presented based on surface light scattering theory. Sensor's static and dynamic performance was investigated. This type of sensor can distinguish between positive and negative bending directions. When curvature radius is larger than 50mm, the sensor will keep good linearity. Two-dimensional shape measurement experiments using curvature sensors have been implemented.
基金supported by the National Basic Research Program of China(973 Program,2013CB933102)the National Natural Science Foundation of China(21273178,21573180,91545204)Xiamen-Zhuoyue Biomass Energy Co.Ltd~~
文摘Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.
文摘The electron movement based on the multi-photon nonlinear Compton scattering with the extra-intense stationary laser field is discussed by using KMR (Kroll-Morton-Rosenbluth) theory.We find that there exists only an evolution from periodicity to non-periodicity of the un-captured electron phase orbits after the energy exchange between the electron beam and laser fields.With the increase of the absorbed photon number n by an electron, this evolution will be more and more faster, while it is rapidly decreased with the enhancement of the collision non-flexibility ξ of the electrons and photons; When the electrons are captured by the laser fields, the evolution is finished, the electrons will stably transport,and the photons dont give up the energy to these electrons.
文摘After considering Kerr nonlinear effect, group velocity dispersion of host and gain distribution of active particle in laser amplifying medium, a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides, the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.
文摘Raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≈120 ps Nd: YAG laser at 1.064/μm were developed. High reflection mirrors for the Stokes wavelength have been used to generate near-infrared and eye safe spectral region of 1.15 - 1.32/μm. Second harmonic generation of the generated Raman lasers was observed. Eifficient multiple Stokes and anti-Stokes picosecond generation in 64 crystals have been shown to exhibit stimulated Raman scattering on about 700 lines covering the whole visible and near-infrared spectrum. All stimulated Raman scattering (SRS) wavelengths in the visible and near-infrared spectrum are identified and attributed to the SRS-active vibration modes of these crystals.
基金Natural Science Basic Research Project for Education Department of Henan Province(20011400006)
文摘The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons,but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field,the evolution is finished,and the electrons will stably transport,and the photons don’t provide the energy for these electrons any more.
文摘A comparison is made of the intensity distribution of the horizontally and vertically polarized radiation sidescattered from small spherical particles in a cylindrical scattering volume.The incident radiation is a nearly collimated linearly polarized He-Ne laser beam.The scattering medium consists of various concentrations of particles which are either 0.22 μm or 0.494 μm in diameter and which were suspended in filtered,distilled water.In general,the effect of the diameter of the particle on depolari-zing the incident beam is more important than the particle concentration,detector depth,and so on.
基金the National Natural Science Foundation of China under
文摘In a rotating noninertial frame, we investigate the eigenstates of the time-dependent problem for electronnucleus scattering assisted by a circularly polarized laser field. Numerical results of probability distribution, quantum potential, and current density are discussed. An approximate expression of scattering cross section for low laser frequency is given.
基金Project(F1-17.1/2017-18/MANF-2017-18-HAR-78129)supported by the University Grants Commission New Delhi,India。
文摘Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause hazardous impact on environment.In this research work,partial replacement of silica sand(SS)and fine sand(FS)by SSP with different contents(25%and 50%each)for making engineered cementitious composite has been explored.The performance was evaluated on the basis of strength,tensile strain,mid span deflection capacity,ultra-sonic pulse velocity and microstructure.Mechanical strength was found to be increased at 25%SSP in both replacements;whereas,strength decreased slightly at 50%replacement.Tensile strain,mid span deflection and quality of concrete were enhanced with increase in SSP content.Using SSP formed denser cementitious composite can help to save the natural resources and contribute in making green cementitious composite.
基金The project supported by National Natural Science Foundation of China under Grant No, 10375083 and the Special Foundation for State Key Basic Research Program of China under Grant No. TG1999075206-2
文摘Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half maximum, with an electron of γ0 = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.
基金Supported by the Basic Scientific Fund for National Public Research Institutes of China(Nos.GY02-2011T10,2015P07)the Qingdao Talent Program(No.13-CX-20)+1 种基金the National Natural Science Foundation of China(Nos.31100567,41176061)the National Natural Science Foundation for Creative Groups(No.41521064)
文摘Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry(EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time(within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.